ﻻ يوجد ملخص باللغة العربية
The archetypal two-impurity Kondo problem in a serially-coupled double quantum dot is investigated in the presence of a thermal bias $theta$. The slave-boson formulation is employed to obtain the nonlinear thermal and thermoelectrical responses. When the Kondo correlations prevail over the antiferromagnetic coupling $J$ between dot spins we demonstrate that the setup shows negative differential thermal conductance regions behaving as a thermal diode. Besides, we report a sign reversal of the thermoelectric current $I(theta)$ controlled by $t/Gamma$ ($t$ and $Gamma$ denote the interdot tunnel and reservoir-dot tunnel couplings, respectively) and $theta$. All these features are attributed to the fact that at large $theta$, both $Q(theta)$ (heat current) and $I(theta)$ are suppressed regardless the value of $t/Gamma$ because the double dot decouples at high thermal biases. Eventually, and for a finite $J$, we investigate how the Kondo-to-antiferromagnetic crossover is altered by $theta$.
We study the non-equilibrium regime of the Kondo effect in a quantum dot laterally coupled to a narrow wire. We observe a split Kondo resonance when a finite bias voltage is imposed across the wire. The splitting is attributed to the creation of a do
We consider a quantum dot with ${cal K}{geq} 2$ orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multi-level Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric po
Ergodic many-body systems are expected to reach quasi-thermal equilibrium. Here we demonstrate that, surprisingly, high-energy electrons, which are injected into an interacting one-dimensional quantum Hall edge mode, stabilize at a far-from-thermaliz
Tunneling conductance through two quantum dots, which are connected in series to left and right leads, is calculated by using the numerical renormalization group method. As the hopping between the dots increases from very small value, the following s
We provide systematic analysis on a non-Hermitian PT -symmetric quantum impurity system both in and out of equilibrium, based on exact computations. In order to understand the interplay between non-Hermiticity and Kondo physics, we focus on a prototy