ترغب بنشر مسار تعليمي؟ اضغط هنا

MONAS: Multi-Objective Neural Architecture Search using Reinforcement Learning

279   0   0.0 ( 0 )
 نشر من قبل Chi-Hung Hsu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent studies on neural architecture search have shown that automatically designed neural networks perform as good as expert-crafted architectures. While most existing works aim at finding architectures that optimize the prediction accuracy, these architectures may have complexity and is therefore not suitable being deployed on certain computing environment (e.g., with limited power budgets). We propose MONAS, a framework for Multi-Objective Neural Architectural Search that employs reward functions considering both prediction accuracy and other important objectives (e.g., power consumption) when searching for neural network architectures. Experimental results showed that, compared to the state-ofthe-arts, models found by MONAS achieve comparable or better classification accuracy on computer vision applications, while satisfying the additional objectives such as peak power.



قيم البحث

اقرأ أيضاً

Neural architecture search (NAS) and hyperparameter optimization (HPO) make deep learning accessible to non-experts by automatically finding the architecture of the deep neural network to use and tuning the hyperparameters of the used training pipeli ne. While both NAS and HPO have been studied extensively in recent years, NAS methods typically assume fixed hyperparameters and vice versa - there exists little work on joint NAS + HPO. Furthermore, NAS has recently often been framed as a multi-objective optimization problem, in order to take, e.g., resource requirements into account. In this paper, we propose a set of methods that extend current approaches to jointly optimize neural architectures and hyperparameters with respect to multiple objectives. We hope that these methods will serve as simple baselines for future research on multi-objective joint NAS + HPO. To facilitate this, all our code is available at https://github.com/automl/multi-obj-baselines.
Multi-objective Neural Architecture Search (NAS) aims to discover novel architectures in the presence of multiple conflicting objectives. Despite recent progress, the problem of approximating the full Pareto front accurately and efficiently remains c hallenging. In this work, we explore the novel reinforcement learning (RL) based paradigm of non-stationary policy gradient (NPG). NPG utilizes a non-stationary reward function, and encourages a continuous adaptation of the policy to capture the entire Pareto front efficiently. We introduce two novel reward functions with elements from the dominant paradigms of scalarization and evolution. To handle non-stationarity, we propose a new exploration scheme using cosine temperature decay with warm restarts. For fast and accurate architecture evaluation, we introduce a novel pre-trained shared model that we continuously fine-tune throughout training. Our extensive experimental study with various datasets shows that our framework can approximate the full Pareto front well at fast speeds. Moreover, our discovered cells can achieve supreme predictive performance compared to other multi-objective NAS methods, and other single-objective NAS methods at similar network sizes. Our work demonstrates the potential of NPG as a simple, efficient, and effective paradigm for multi-objective NAS.
We propose Stochastic Neural Architecture Search (SNAS), an economical end-to-end solution to Neural Architecture Search (NAS) that trains neural operation parameters and architecture distribution parameters in same round of back-propagation, while m aintaining the completeness and differentiability of the NAS pipeline. In this work, NAS is reformulated as an optimization problem on parameters of a joint distribution for the search space in a cell. To leverage the gradient information in generic differentiable loss for architecture search, a novel search gradient is proposed. We prove that this search gradient optimizes the same objective as reinforcement-learning-based NAS, but assigns credits to structural decisions more efficiently. This credit assignment is further augmented with locally decomposable reward to enforce a resource-efficient constraint. In experiments on CIFAR-10, SNAS takes less epochs to find a cell architecture with state-of-the-art accuracy than non-differentiable evolution-based and reinforcement-learning-based NAS, which is also transferable to ImageNet. It is also shown that child networks of SNAS can maintain the validation accuracy in searching, with which attention-based NAS requires parameter retraining to compete, exhibiting potentials to stride towards efficient NAS on big datasets. We have released our implementation at https://github.com/SNAS-Series/SNAS-Series.
Neural architecture search (NAS) aims to discover network architectures with desired properties such as high accuracy or low latency. Recently, differentiable NAS (DNAS) has demonstrated promising results while maintaining a search cost orders of mag nitude lower than reinforcement learning (RL) based NAS. However, DNAS models can only optimize differentiable loss functions in search, and they require an accurate differentiable approximation of non-differentiable criteria. In this work, we present UNAS, a unified framework for NAS, that encapsulates recent DNAS and RL-based approaches under one framework. Our framework brings the best of both worlds, and it enables us to search for architectures with both differentiable and non-differentiable criteria in one unified framework while maintaining a low search cost. Further, we introduce a new objective function for search based on the generalization gap that prevents the selection of architectures prone to overfitting. We present extensive experiments on the CIFAR-10, CIFAR-100, and ImageNet datasets and we perform search in two fundamentally different search spaces. We show that UNAS obtains the state-of-the-art average accuracy on all three datasets when compared to the architectures searched in the DARTS space. Moreover, we show that UNAS can find an efficient and accurate architecture in the ProxylessNAS search space, that outperforms existing MobileNetV2 based architectures. The source code is available at https://github.com/NVlabs/unas .
We introduce RL-DARTS, one of the first applications of Differentiable Architecture Search (DARTS) in reinforcement learning (RL) to search for convolutional cells, applied to the Procgen benchmark. We outline the initial difficulties of applying neu ral architecture search techniques in RL, and demonstrate that by simply replacing the image encoder with a DARTS supernet, our search method is sample-efficient, requires minimal extra compute resources, and is also compatible with off-policy and on-policy RL algorithms, needing only minor changes in preexisting code. Surprisingly, we find that the supernet can be used as an actor for inference to generate replay data in standard RL training loops, and thus train end-to-end. Throughout this training process, we show that the supernet gradually learns better cells, leading to alternative architectures which can be highly competitive against manually designed policies, but also verify previous design choices for RL policies.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا