ﻻ يوجد ملخص باللغة العربية
Having completed its commissioning phase, the Advanced Rayleigh guided Ground-layer adaptive Optics System (ARGOS) facility is coming online for scientific observations at the Large Binocular Telescope (LBT). With six Rayleigh laser guide stars in two constellations and the corresponding wavefront sensing, ARGOS corrects the ground-layer distortions for both LBT 8.4m eyes with their adaptive secondary mirrors. Under regular observing conditions, this set-up delivers a point spread function (PSF) size reduction by a factor of ~2--3 compared to a seeing-limited operation. With the two LUCI infrared imaging and multi-object spectroscopy instruments receiving the corrected images, observations in the near-infrared can be performed at high spatial and spectral resolution. We discuss the final ARGOS technical set-up and the adaptive optics performance. We show that imaging cases with ground-layer adaptive optics (GLAO) are enhancing several scientific programmes, from cluster colour magnitude diagrams and Milky Way embedded star formation, to nuclei of nearby galaxies or extragalactic lensing fields. In the unique combination of ARGOS with the multi-object near-infrared spectroscopy available in LUCI over a 4x4 arcmin field of view, the first scientific observations have been performed on local and high-z objects. Those high spatial and spectral resolution observations demonstrate the capabilities now at hand with ARGOS at the LBT.
Gravitationally lensed systems allow a detailed view of galaxies at high redshift. High spatial- and spectral-resolution measurements of arc-like structures can offer unique constraints on the physical and dynamical properties of high-z systems. We p
We present the integration status for `imaka, the ground-layer adaptive optics (GLAO) system on the University of Hawaii 2.2-meter telescope on Maunakea, Hawaii. This wide-field GLAO pathfinder system exploits Maunakeas highly confined ground layer a
Ground-layer adaptive optics (GLAO) systems offer the possibility of improving the seeing of large ground-based telescopes and increasing the efficiency and sensitivity of observations over a wide field-of-view. We explore the utility and feasibility
Integral field spectrographs are an important technology for exoplanet imaging, due to their ability to take spectra in a high-contrast environment, and improve planet detection sensitivity through spectral differential imaging. ALES is the first int
Here we describe a simple, efficient, and most importantly fully operational point-spread-function(PSF)-reconstruction approach for laser-assisted ground layer adaptive optics (GLAO) in the frame of the Multi Unit Spectroscopic Explorer (MUSE) Wide F