ﻻ يوجد ملخص باللغة العربية
The star KIC 8462852 (Boyajians Star) displays both fast dips of up to 20% on time scales of days, plus long-term secular fading by up to 19% on time scales from a year to a century. We report on CCD photometry of KIC 8462852 from 2015.75 to 2018.18, with 19,176 images making for 1,866 nightly magnitudes in BVRI. Our light curves show a continuing secular decline (by 0.023 +- 0.003 mags in the B-band) with three superposed dips with duration 120-180 days. This demonstrates that there is a continuum of dip durations from a day to a century, so that the secular fading is seen to be by the same physical mechanism as the short-duration Kepler dips. The BVRI light curves all have the same shape, with the slopes and amplitudes for VRI being systematically smaller than in the B-band by factors of 0.77 +- 0.05, 0.50 +- 0.05, and 0.31 +- 0.05. We rule out any hypothesis involving occultation of the primary star by any star, planet, solid body, or optically thick cloud. But these ratios are the same as that expected for ordinary extinction by dust clouds. This chromatic extinction implies dust particle sizes going down to ~0.1 micron, suggesting that this dust will be rapidly blown away by stellar radiation pressure, so the dust clouds must have formed within months. The modern infrared observations were taken at a time when there was at least 12.4% +- 1.3% dust coverage (as part of the secular dimming), and this is consistent with dimming originating in circumstellar dust.
The light curve of KIC 8462852, a.k.a Boyajians Star, undergoes deep dips the origin of which remains unclear. A faint star $approx$2arcsec to the east was discovered in Keck/NIRC2 imaging in Boyajian et al. (2016), but its status as a binary, and po
Over the duration of the Kepler mission, KIC8462852 was observed to undergo irregularly shaped, aperiodic dips in flux of up to $sim 20$%. The dipping activity can last for between 5 and 80 days. We characterize the object with high-resolution spectr
We report ground-based spectrophotometry of KIC 8462852, during its first dimming events since the end of the Kepler mission. The dimmings show a clear colour-signature, and are deeper in visual blue wavelengths than in red ones. The flux loss wavele
We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping beg
We analyzed a Kepler light curve of KIC 8751494, a recently recognized novalike cataclysmic variable in the Kepler field. We detected a stable periodicity of 0.114379(1) d, which we identified as being the binarys orbital period. The stronger photome