ﻻ يوجد ملخص باللغة العربية
Dynamic nuclear polarization via contact with electronic spins has emerged as an attractive route to enhance the sensitivity of nuclear magnetic resonance (NMR) beyond the traditional limits imposed by magnetic field strength and temperature. Among the various alternative implementations, the use of nitrogen vacancy (NV) centers in diamond - a paramagnetic point defect whose spin can be optically polarized at room temperature - has attracted widespread attention, but applications have been hampered by the need to align the NV axis with the external magnetic field. Here we overcome this hurdle through the combined use of continuous optical illumination and a microwave sweep over a broad frequency range. As a proof of principle, we demonstrate our approach using powdered diamond where we attain bulk 13C spin polarization in excess of 0.25 percent under ambient conditions. Remarkably, our technique acts efficiently on diamond crystals of all orientations, and polarizes nuclear spins with a sign that depends exclusively on the direction of the microwave sweep. Our work paves the way towards the use of hyperpolarized diamond particles as imaging contrast agents for biosensing and, ultimately, for the hyperpolarization of nuclear spins in arbitrary liquids brought in contact with their surface.
Methods of optical dynamic nuclear polarization (DNP) open the door to the replenishable hyperpolarization of nuclear spins, boosting their NMR/MRI signature by orders of magnitude. Nanodiamond powder rich in negatively charged Nitrogen Vacancy (NV)
In this work we investigated the time behavior of the polarization of bulk 13C nuclei in diamond above the thermal equilibrium. This nonthermal nuclear hyperpolarization is achieved by cross relaxation between two nitrogen related paramagnetic defect
Here we propose and analyse in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron
Dynamic Nuclear Polarization (DNP) is a powerful suite of techniques that deliver multifold signal enhancements in NMR and MRI. The generated athermal spin states can also be exploited for quantum sensing and as probes for many-body physics. Typical
Single-photon emitters are essential for enabling several emerging applications in quantum information technology, quantum sensing and quantum communication. Scalable photonic platforms capable of hosting intrinsic or directly embedded sources of sin