Relating Chain Conformations to Extensional Stress In Entangled Polymer Melts


الملخص بالإنكليزية

Nonlinear extensional flows are common in polymer processing but remain challenging theoretically because dramatic stretching of chains deforms the entanglement network far from equilibrium. Here, we present coarse-grained simulations of extensional flows in entangled polymer melts for Rouse-Weissenberg numbers $Wi_R=0.06$-$52$ and Hencky strains $epsilongeq6$. Simulations reproduce experimental trends in extensional viscosity with time, rate and molecular weight. Studies of molecular structure reveal an elongation and thinning of the confining tube with increasing $Wi_R$. The rising stress is quantitatively consistent with the decreasing entropy of chains at the equilibrium entanglement length. Molecular weight dependent trends in viscosity are related to a crossover from the Newtonian limit to a high rate limit that scales differently with chain length.

تحميل البحث