ترغب بنشر مسار تعليمي؟ اضغط هنا

3-Phase Evolution of a Coronal Hole, Part I: 360{deg} remote sensing and in-situ observations

135   0   0.0 ( 0 )
 نشر من قبل Manuela Temmer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the evolution of a well-observed, long-lived, low-latitude coronal hole (CH) over 10 solar rotations in the year 2012. By combining EUV imagery from STEREO-A/B and SDO we are able to track and study the entire evolution of the CH having a continuous 360$deg$ coverage of the Sun. The remote sensing data are investigated together with in-situ solar wind plasma and magnetic field measurements from STEREO-A/B, ACE and WIND. From this we obtain how different evolutionary states of the CH as observed in the solar atmosphere (changes in EUV intensity and area) affect the properties of the associated high-speed stream measured at $1$AU. Most distinctly pronounced for the CH area, three development phases are derived: a) growing, b) maximum, and c) decaying phase. During these phases the CH area a) increases over a duration of around three months from about $1 cdot 10^{10} mathrm{km}^{2}$ to $6 cdot 10^{10} mathrm{km}^{2}$, b) keeps a rather constant area for about one month of $> 9 cdot 10^{10} mathrm{km}^{2}$, and c) finally decreases in the following three months below $1 cdot 10^{10} mathrm{km}^{2}$ until the CH cannot be identified anymore. The three phases manifest themselves also in the EUV intensity and in in-situ measured solar wind proton bulk velocity. Interestingly, the three phases are related to a different range in solar wind speed variations and we find for the growing phase a range of $460-600$~km~s$^{-1}$, for the maximum phase $600-720$~km~s$^{-1}$, and for the decaying phase a more irregular behavior connected to slow and fast solar wind speed of $350-550$~km~s$^{-1}$.



قيم البحث

اقرأ أيضاً

We investigate the magnetic characteristics of a persistent coronal hole (CH) extracted from EUV imagery using HMI filtergrams over the timerange February 2012-October 2012. The magnetic field, its distribution as well as the magnetic fine structure in form of flux tubes (FT) are analyzed in different evolutionary states of the CH. We find a strong linear correlation between the magnetic properties (e.g. signed/unsigned magnetic field strength) and area of the CH. As such, the evolutionary pattern in the magnetic field clearly follows the three-phase evolution (growing, maximum and decaying phase) as found from EUV data (Part I). This evolutionary process is most likely driven by strong FTs with a mean magnetic field strength exceeding 50 G. During the maximum phase they entail up to 72% of the total signed magnetic flux of the CH, but only cover up to 3.9% of the total CH area, whereas during the growing and decaying phase, strong FTs entail 54-60% of the signed magnetic flux and cover around 1-2% of the CHs total area. We conclude that small scale-structures of strong unipolar magnetic field are the fundamental building blocks of a CH and govern its evolution.
Context. The Suns complex corona is the source of the solar wind and interplanetary magnetic field. While the large scale morphology is well understood, the impact of variations in coronal properties on the scale of a few degrees on properties of the interplanetary medium is not known. Solar Orbiter, carrying both remote sensing and in situ instruments into the inner solar system, is intended to make these connections better than ever before. Aims. We combine remote sensing and in situ measurements from Solar Orbiters first perihelion at 0.5 AU to study the fine scale structure of the solar wind from the equatorward edge of a polar coronal hole with the aim of identifying characteristics of the corona which can explain the in situ variations. Methods. We use in situ measurements of the magnetic field, density and solar wind speed to identify structures on scales of hours at the spacecraft. Using Potential Field Source Surface mapping we estimate the source locations of the measured solar wind as a function of time and use EUI images to characterise these solar sources. Results. We identify small scale stream interactions in the solar wind with compressed magnetic field and density along with speed variations which are associated with corrugations in the edge of the coronal hole on scales of several degrees, demonstrating that fine scale coronal structure can directly influence solar wind properties and drive variations within individual streams. Conclusions. This early analysis already demonstrates the power of Solar Orbiters combined remote sensing and in situ payload and shows that with future, closer perihelia it will be possible dramatically to improve our knowledge of the coronal sources of fine scale solar wind structure, which is important both for understanding the phenomena driving the solar wind and predicting its impacts at the Earth and elsewhere.
In the present work, we analyze a filament eruption associated with an ICME that arrived at L1 on August 5th, 2011. In multi-wavelength SDO/AIA images, three plasma parcels within the filament were tracked at high-cadence along the solar corona. A no vel absorption diagnostic technique was applied to the filament material travelling along the three chosen trajectories to compute the column density and temperature evolution in time. Kinematics of the filamentary material were estimated using STEREO/EUVI and STEREO/COR1 observations. The Michigan Ionization Code used inputs of these density, temperature, and speed profiles for the computation of ionization profiles of the filament plasma. Based on these measurements we conclude the core plasma was in near ionization equilibrium, and the ionization states were not frozen-in at the altitudes where they were visible in absorption in AIA images. Additionally, we report that the filament plasma was heterogeneous, and the filamentary material was continuously heated as it expanded in the low solar corona.
520 - T. Rollett , C. Moestl , M. Temmer 2014
We present an analysis of the fast coronal mass ejection (CME) of 2012 March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CMEs propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ~2700 km/s at 15 R_sun to ~1500 km/s at 154 R_sun), the Earth-directed part showed an abrupt retardation below 35 R_sun (from ~1700 to ~900 km/s). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied.
In order to have a comprehensive view of the propagation and evolution of coronal mass ejections (CMEs) from the Sun to deep interplanetary space beyond 1 au, we carry out a kinematic analysis of 7 CMEs in solar cycle 23. The events are required to h ave coordinated coronagraph observations, interplanetary type II radio bursts, and multi-point in-situ measurements at the Earth and Ulysses. A graduated cylindrical shell model, an analytical model without free parameters and a magnetohydrodynamic model are used to derive CME kinematics near the Sun, to quantify the CME/shock propagation in the Sun-Earth space, and to connect in-situ signatures at the Earth and Ulysses, respectively. We find that each of the 7 CME-driven shocks experienced a major deceleration before reaching 1 au and thereafter propagated with a gradual deceleration from the Earth to larger distances. The resulting CME/shock propagation profile for each case is roughly consistent with all the data, which verifies the usefulness of the simple analytical model for CME/shock propagation in the heliosphere. The statistical analysis of CME kinematics indicates a tendency that the faster the CME, the larger the deceleration, and the shorter the deceleration time period within 1 au. For several of these events, the associated geomagnetic storms were mainly caused by the southward magnetic fields in the sheath region. In particular, the interaction between a CME-driven shock and a preceding ejecta significantly enhanced the preexisting southward magnetic fields and gave rise to a severe complex geomagnetic storm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا