ﻻ يوجد ملخص باللغة العربية
The WaveDAQ is a newly-designed digitization Trigger and Data AcQuisition system (TDAQ) allowing Multi-gigasample waveform recording on a large amount of channels (up to 16384) by using the DRS4 analog switched capacitor array as downconverting ASIC. A high bandwidth, programmable input stage has been coupled with a bias generator to allow SiPM operation without need of any other external apparatus. The trigger generation is tightly coupled within the system to limit the required depth of the analog memory, allowing faster digitization speeds. This system has been designed for the MEG experiment upgrade but also proved to be highly scalable and already found other applications.
The integrated low-level trigger and data acquisition (TDAQ) system of the NA62 experiment at CERN is described. The requirements of a large and fast data reduction in a high-rate environment for a medium-scale, distributed ensemble of many different
The MEG experiment, designed to search for the mu+->e+ gamma decay at a 10^-13 sensitivity level, completed data taking in 2013. In order to increase the sensitivity reach of the experiment by an order of magnitude to the level of 6 x 10-14 for the b
The Belle II experiment at the SuperKEKB $e^{+}e^{-}$ collider in KEK, Japan, started physics data-taking with a complete detector from early 2019 with the primary physics goal of probing new physics in heavy quark and lepton decays. An online trigge
We describe the electronics and data acquisition system used in the first phase of the PandaX experiment -- a 120 kg dual-phase liquid xenon dark matter direct detection experiment in the China Jin-Ping Underground Laboratory. This system utilized 18
The MEG experiment at the Paul Scherrer Institut searches for the charged-Lepton-Flavor-Violating mu+ -> e+ gamma decay. MEG has already set the world best upper limit on the branching ratio: BR<4.2x10^-13 @ 90% C.l. An upgrade (MEG II) of the whole