ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimized ultra-narrow atomic bandpass filters via magneto-optic rotation in an unconstrained geometry

80   0   0.0 ( 0 )
 نشر من قبل James Keaveney
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomic bandpass filters are widely used in a variety of applications, owing to their high peak transmission and narrow bandwidth. Much of the previous literature has used the Faraday effect to realize such filters, where an axial magnetic field is applied across the atomic medium. Here we show that by using a non-axial magnetic field, the performance of these filters can be improved in comparison to the Faraday geometry. We optimize the performance of these filters using a numerical model and verify their performance by direct quantitative comparison with experimental data. We find excellent agreement between experiment and theory. These optimized filters could find use in many of the areas where Faraday filters are currently used, with little modification to the optical setup, allowing for improved performance with relatively little change.



قيم البحث

اقرأ أيضاً

We present an investigation of magneto-optic rotation in both the Faraday and Voigt geometries. We show that more physical insight can be gained in a comparison of the Faraday and Voigt effects by visualising optical rotation trajectories on the Poin care sphere. This insight is applied to design and experimentally demonstrate an improved ultra-narrow optical bandpass filter based on combining optical rotation from two cascaded cells - one in the Faraday geometry and one in the Voigt geometry. Our optical filter has an equivalent noise bandwidth of 0.56 GHz, and a figure-of-merit value of 1.22(2) GHz$^{-1}$ which is higher than any previously demonstrated filter on the Rb D2 line.
139 - S. Pradhan , S. Mishra , R. Behera 2014
The operation of a high sensitive atomic magnetometer using resonant elliptically polarized light is demonstrated. The experimental geometry allows autonomous frequency stabilization of the laser, thereby offers compact operation of the overall devic e. The magnetometry is based on measurement of the zero magnetic field resonance in degenerate two level system using polarimetric detection and has a preliminary sensitivity of <10 pT/Hz1/2 @ 1 Hz.
Atomic clocks have been transformational in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Next-generation optical atomic clocks can extend the capabili ty of these timekeepers, where researchers have long aspired toward measurement precision at 1 part in $bm{10^{18}}$. This milestone will enable a second revolution of new timing applications such as relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests on physics beyond the Standard Model. Here, we describe the development and operation of two optical lattice clocks, both utilizing spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of $bm{1.6times 10^{-18}}$ after only $bm{7}$ hours of averaging.
We predict theoretically and demonstrate experimentally an ellipticity-dependent nonlinear magneto-optic rotation of elliptically-polarized light propagating in a coherent atomic medium. We show that this effect results from a hexadecapole and higher order momenta of atomic coherence, and is associated with an enhancement of Kerr and higher orders nonlinearities accompanied by suppression of the other linear and nonlinear susceptibility terms of the medium. These nonlinearities might be useful for quantum signal processing. In particular, we report an observation of an enhancement the polarization rotation of elliptically polarized light resonant with the 5S_{1/2} F=2 -> 5P_{1/2} F=1 transition of Rb87.
We investigate theoretically the effects of vacuum-induced coherence (VIC) on magneto-optical rotation (MOR). We carry out a model study to show that VIC in the presence of a control laser and a magnetic field can lead to large enhancement in the rot ation of the plane of polarization of a linearly polarized weak laser with vanishing circular dichroism. This effect can be realized in cold molecular gases and may be used as a sensitive probe for VIC. Such a large MOR angle can also be used to detect weak magnetic field with large measurement sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا