ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic imaging of the complex charge density wave order parameter

69   0   0.0 ( 0 )
 نشر من قبل \\'Arp\\'ad P\\'asztor
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The charge density wave (CDW) in solids is a collective ground state combining lattice distortions and charge ordering. It is defined by a complex order parameter with an amplitude and a phase. The amplitude and wavelength of the charge modulation are readily accessible to experiment. However, accurate measurements of the corresponding phase are significantly more challenging. Here we combine reciprocal and real space information to map the full complex order parameter based on topographic scanning tunneling microscopy (STM) images. Our technique overcomes limitations of earlier Fourier space based techniques to achieve distinct amplitude and phase images with high spatial resolution. Applying this analysis to transition metal dichalcogenides provides striking evidence that their CDWs consist of three individual charge modulations whose ordering vectors are connected by the fundamental rotational symmetry of the crystalline lattice. Spatial variations in the relative phases of these three modulations account for the different contrasts often observed in STM topographic images. Phase images further reveal topological defects and discommensurations, a singularity predicted by theory for a nearly commensurate CDW. Such precise real space mapping of the complex order parameter provides a powerful tool for a deeper understanding of the CDW ground state whose formation mechanisms remain largely unclear.



قيم البحث

اقرأ أيضاً

The capability to isolate one to few unit-cell thin layers from the bulk matrix of layered compounds opens fascinating prospects to engineer novel electronic phases. However, a comprehensive study of the thickness dependence and of potential extrinsi c effects are paramount to harness the electronic properties of such atomic foils. One striking example is the charge density wave (CDW) transition temperature in layered dichalcogenides whose thickness dependence remains unclear in the ultrathin limit. Here we present a detailed study of the thickness and temperature dependences of the CDW in VSe$_2$ by scanning tunnelling microscopy (STM). We show that mapping the real-space CDW periodicity over a broad thickness range unique to STM provides essential insight. We introduce a robust derivation of the local order parameter and transition temperature based on the real space charge modulation amplitude. Both quantities exhibit a striking non-monotonic thickness dependence that we explain in terms of a 3D to 2D dimensional crossover in the FS topology. This finding highlights thickness as a true tuning parameter of the electronic ground state and reconciles seemingly contradicting thickness dependencies determined in independent transport studies.
We investigate charge ordering in the Holstein model in the presence of anisotropic hopping, $t_x, t_y=1-delta, 1 + delta$, as a model of the effect of strain on charge density wave (CDW) materials. Using Quantum Monte Carlo simulations, we show that the CDW transition temperature is relatively insensitive to moderate anisotropy $delta lesssim 0.3$, but begins to decrease more rapidly at $delta gtrsim 0.4$. However, the density correlations, as well as the kinetic energies parallel and perpendicular to the compressional axis, change significantly for moderate $delta$. Accompanying mean-field theory calculations show a similar qualitative structure, with the transition temperature relatively constant at small $delta$ and a more rapid decrease for larger strains. We also obtain the density of states $N(omega)$, which provides clear signal of the charge ordering transition at large strain, where finite size scaling of the charge structure factor is extremely difficult because of the small value of the order parameter.
The Holstein Hamiltonian describes fermions hopping on a lattice and interacting locally with dispersionless phonon degrees of freedom. In the low density limit, dressed quasiparticles, polarons and bipolarons, propagate with an effective mass. At hi gher densities, pairs can condense into a low temperature superconducting phase and, at or near commensurate filling on a bipartite lattice, to charge density wave (CDW) order. CDW formation breaks a discrete symmetry and hence occurs via a second order (Ising) transition, and therefore at a finite $T_{rm cdw}$ in two dimensions. Quantum Monte Carlo calculations have determined $T_{rm cdw}$ for a variety of geometries, including square, honeycomb, and Lieb lattices. The superconducting transition, on the other hand, in $d=2$ is in the Kosterlitz-Thouless (KT) universality class, and is much less well characterized. In this paper we determine $T_{rm sc}$ for the square lattice, for several values of the density $rho$ and phonon frequency $omega_0$. We find that quasi-long range order sets in at $T_{rm sc} lesssim t/20$, where $t$ is the near neighbor hopping amplitude, consistent with previous rough estimates from simulations which only extrapolated to the temperatures we reach from considerably higher $T$. We also show evidence for a discontinuous evolution of the density as the CDW transition is approached at half-filling.
72 - H. Jang , W.-S. Lee , H. Nojiri 2016
The existence of charge density wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the ground state order has remained uncertain because disorder and the presence of superconductivity typically limit t he CDW correlation lengths to a dozen unit cells or less. Here we explore the CDW correlations in YBa2Cu3Ox (YBCO) ortho-II and ortho-VIII crystals, which belong to the cleanest available cuprate family, at magnetic fields in excess of the resistive upper critical field (Hc2) where the superconductivity is heavily suppressed. We find an incommensurate, unidirectional CDW with a well-defined onset at a critical field strength that is proportional to Hc2. It is related to but distinct from the short-range bidirectional CDW that exists at zero magnetic field. The unidirectional CDW possesses a long inplane correlation length as well as significant correlations between neighboring CuO2 planes, yielding a correlation volume that is at least 2 - 3 orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground-state of an ideal disorder-free cuprate.
335 - Bo Xiao , F. Hebert , G. Batrouni 2019
Recent studies of pairing and charge order in materials such as FeSe, SrTiO$_3$, and 2H-NbSe$_2$ have suggested that momentum dependence of the electron-phonon coupling plays an important role in their properties. Initial attempts to study Hamiltonia ns which either do not include or else truncate the range of Coulomb repulsion have noted that the resulting spatial non-locality of the electron-phonon interaction leads to a dominant tendency to phase separation. Here we present Quantum Monte Carlo results for such models in which we incorporate both on-site and intersite electron-electron interactions. We show that these can stabilize phases in which the density is homogeneous and determine the associated phase boundaries. As a consequence, the physics of momentum dependent electron-phonon coupling can be determined outside of the trivial phase separated regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا