For a generic vector field robustly without horseshoes, and an aperiodic chain recurrent class with singularities whose saddle values have different signs, the extended rescaled Poincare map is associated with a central model. We estimate such central model and show it must have chain recurrent central segments over the singularities. This obstructs the application of central model to create horseshoes, and indicates that, differing from $C^1$ diffeomorphisms, solo using central model method is insufficient as a strategy to prove weak Palis conjecture for higher dimensional ($geq 4$) singular flows. Our computation is actually based on simplified way of addressing blowup construction. As a byproduct, we are applicable to directly compute the extended rescaled Poincare map upto second order derivatives, which we believe has its independent interests.