ﻻ يوجد ملخص باللغة العربية
Strange or bad metallic transport, defined by its incompatibility with conventional quasiparticle pictures, is a theme common to strongly correlated materials and ubiquitous in many high temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 the non-interacting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials.
We investigate the evolution of the Mott insulators in the triangular lattice Hubbard Model, as a function of hole doping $delta$ in both the strong and intermediate coupling limit. Using the density matrix renormalization group (DMRG) method, at lig
We show that the numerically exact bold-line diagrammatic theory for the $2d$ Hubbard model exhibits a non-Fermi-liquid (NFL) strange metal state, which is connected to the SYK NFL in the strong-interaction limit. The solution for the doped system fe
Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (A
We calculate and resolve with unprecedented detail the local density of states (DOS) and momentum-dependent spectral functions at zero temperature of one of the key models for strongly correlated electron materials, the degenerate two-orbital Kanamor
We derive the disorder vs. doping phase diagram of the doped Hubbard model via Dynamical Mean Field Theory combined with Typical Medium Theory, which allows the description of both Mott (correlation driven) and Anderson (disorder driven) metal-insula