ﻻ يوجد ملخص باللغة العربية
Tomographic wave-front reconstruction is the main computational bottleneck to realize real-time correction for turbulence-induced wave-front aberrations in future laser-assisted tomographic adaptive-optics (AO) systems for ground-based Giant Segmented Mirror Telescopes (GSMT), because of its unprecedented number of degrees of freedom, $N$, i.e. the number of measurements from wave-front sensors (WFS). In this paper, we provide an efficient implementation of the minimum-mean-square error (MMSE) tomographic wave-front reconstruction mainly useful for some classes of AO systems not requiring a multi-conjugation, such as laser-tomographic AO (LTAO), multi-object AO (MOAO) and ground-layer AO (GLAO) systems, but also applicable to multi-conjugate AO (MCAO) systems. This work expands that by R. Conan [ProcSPIE, 9148, 91480R (2014)] to the multi-wave-front, tomographic case using natural and laser guide stars. The new implementation exploits the Toeplitz structure of covariance matrices used in a MMSE reconstructor, which leads to an overall $O(Nlog N)$ real-time complexity compared to $O(N^2)$ of the original implementation using straight vector-matrix multiplication. We show that the Toeplitz-based algorithm leads to 60,nm rms wave-front error improvement for the European Extremely Large Telescope Laser-Tomography AO system over a well-known sparse-based tomographic reconstruction, but the number of iterations required for suitable performance is still beyond what a real-time system can accommodate to keep up with the time-varying turbulence
In tomographic adaptive-optics (AO) systems, errors due to tomographic wave-front reconstruction limit the performance and angular size of the scientific field of view (FoV), where AO correction is effective. We propose a multi time-step tomographic
The covariance matrix $boldsymbol{Sigma}$ of non-linear clustering statistics that are measured in current and upcoming surveys is of fundamental interest for comparing cosmological theory and data and a crucial ingredient for the likelihood approxim
Atmospheric tomography, i.e. the reconstruction of the turbulence profile in the atmosphere, is a challenging task for adaptive optics (AO) systems of the next generation of extremely large telescopes. Within the community of AO the first choice solv
The next generation of galaxy surveys like the Dark Energy Spectroscopic Instrument (DESI) and Euclid will provide datasets orders of magnitude larger than anything available to date. Our ability to model nonlinear effects in late time matter perturb
We use a theoretical frame-work to analytically assess temporal prediction error functions on von-Karman turbulence when a zonal representation of wave-fronts is assumed. Linear prediction models analysed include auto-regressive of order up to three,