ﻻ يوجد ملخص باللغة العربية
A practical and promising approach to parallelizing XPath queries was proposed by Bordawekar et al. in 2009, which enables parallelization on top of existing XML database engines. Although they experimentally demonstrated the speedup by their approach, their practice has already been out of date because the software environment has largely changed with the capability of XQuery processing. In this work, we implement their approach in two ways on top of a state-of-the-art XML database engine and experimentally demonstrate that our implementations can bring significant speedup on a commodity server.
The wide use of XML for document management and data exchange has created the need to query large repositories of XML data. To efficiently query such large data collections and take advantage of parallelism, we have implemented Apache VXQuery, an ope
Extract-Transform-Load (ETL) handles large amount of data and manages workload through dataflows. ETL dataflows are widely regarded as complex and expensive operations in terms of time and system resources. In order to minimize the time and the resou
Responsive Web Design (RWD) enables web applications to adapt to the characteristics of different devices such as screen size which is important for mobile browsing. Today, the only W3C standard to support this adaptability is CSS media queries. Howe
Large-scale graph-structured data arising from social networks, databases, knowledge bases, web graphs, etc. is now available for analysis and mining. Graph-mining often involves relationship queries, which seek a ranked list of interesting interconn
The k-regret query aims to return a size-k subset S of a database D such that, for any query user that selects a data object from this size-k subset S rather than from database D, her regret ratio is minimized. The regret ratio here is modeled by the