ترغب بنشر مسار تعليمي؟ اضغط هنا

Few-Shot Segmentation Propagation with Guided Networks

418   0   0.0 ( 0 )
 نشر من قبل Evan Shelhamer
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning-based methods for visual segmentation have made progress on particular types of segmentation tasks, but are limited by the necessary supervision, the narrow definitions of fixed tasks, and the lack of control during inference for correcting errors. To remedy the rigidity and annotation burden of standard approaches, we address the problem of few-shot segmentation: given few image and few pixel supervision, segment any images accordingly. We propose guided networks, which extract a latent task representation from any amount of supervision, and optimize our architecture end-to-end for fast, accurate few-shot segmentation. Our method can switch tasks without further optimization and quickly update when given more guidance. We report the first results for segmentation from one pixel per concept and show real-time interactive video segmentation. Our unified approach propagates pixel annotations across space for interactive segmentation, across time for video segmentation, and across scenes for semantic segmentation. Our guided segmentor is state-of-the-art in accuracy for the amount of annotation and time. See http://github.com/shelhamer/revolver for code, models, and more details.



قيم البحث

اقرأ أيضاً

Few-shot segmentation has been attracting a lot of attention due to its effectiveness to segment unseen object classes with a few annotated samples. Most existing approaches use masked Global Average Pooling (GAP) to encode an annotated support image to a feature vector to facilitate query image segmentation. However, this pipeline unavoidably loses some discriminative information due to the average operation. In this paper, we propose a simple but effective self-guided learning approach, where the lost critical information is mined. Specifically, through making an initial prediction for the annotated support image, the covered and uncovered foreground regions are encoded to the primary and auxiliary support vectors using masked GAP, respectively. By aggregating both primary and auxiliary support vectors, better segmentation performances are obtained on query images. Enlightened by our self-guided module for 1-shot segmentation, we propose a cross-guided module for multiple shot segmentation, where the final mask is fused using predictions from multiple annotated samples with high-quality support vectors contributing more and vice versa. This module improves the final prediction in the inference stage without re-training. Extensive experiments show that our approach achieves new state-of-the-art performances on both PASCAL-5i and COCO-20i datasets.
Few-shot instance segmentation (FSIS) conjoins the few-shot learning paradigm with general instance segmentation, which provides a possible way of tackling instance segmentation in the lack of abundant labeled data for training. This paper presents a Fully Guided Network (FGN) for few-shot instance segmentation. FGN perceives FSIS as a guided model where a so-called support set is encoded and utilized to guide the predictions of a base instance segmentation network (i.e., Mask R-CNN), critical to which is the guidance mechanism. In this view, FGN introduces different guidance mechanisms into the various key components in Mask R-CNN, including Attention-Guided RPN, Relation-Guided Detector, and Attention-Guided FCN, in order to make full use of the guidance effect from the support set and adapt better to the inter-class generalization. Experiments on public datasets demonstrate that our proposed FGN can outperform the state-of-the-art methods.
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results and hardly work on unseen classes without fine-tuning. Few-shot segmentation is thus proposed to tackle this problem by learning a model that quick ly adapts to new classes with a few labeled support samples. Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information of training classes and spatial inconsistency between query and support targets. To alleviate these issues, we propose the Prior Guided Feature Enrichment Network (PFENet). It consists of novel designs of (1) a training-free prior mask generation method that not only retains generalization power but also improves model performance and (2) Feature Enrichment Module (FEM) that overcomes spatial inconsistency by adaptively enriching query features with support features and prior masks. Extensive experiments on PASCAL-5$^i$ and COCO prove that the proposed prior generation method and FEM both improve the baseline method significantly. Our PFENet also outperforms state-of-the-art methods by a large margin without efficiency loss. It is surprising that our model even generalizes to cases without labeled support samples. Our code is available at https://github.com/Jia-Research-Lab/PFENet/.
Despite the great progress made by deep neural networks in the semantic segmentation task, traditional neural-networkbased methods typically suffer from a shortage of large amounts of pixel-level annotations. Recent progress in fewshot semantic segme ntation tackles the issue by only a few pixel-level annotated examples. However, these few-shot approaches cannot easily be applied to multi-way or weak annotation settings. In this paper, we advance the few-shot segmentation paradigm towards a scenario where image-level annotations are available to help the training process of a few pixel-level annotations. Our key idea is to learn a better prototype representation of the class by fusing the knowledge from the image-level labeled data. Specifically, we propose a new framework, called PAIA, to learn the class prototype representation in a metric space by integrating image-level annotations. Furthermore, by considering the uncertainty of pseudo-masks, a distilled soft masked average pooling strategy is designed to handle distractions in image-level annotations. Extensive empirical results on two datasets show superior performance of PAIA.
Over the past few years, state-of-the-art image segmentation algorithms are based on deep convolutional neural networks. To render a deep network with the ability to understand a concept, humans need to collect a large amount of pixel-level annotated data to train the models, which is time-consuming and tedious. Recently, few-shot segmentation is proposed to solve this problem. Few-shot segmentation aims to learn a segmentation model that can be generalized to novel classes with only a few training images. In this paper, we propose a cross-reference network (CRNet) for few-shot segmentation. Unlike previous works which only predict the mask in the query image, our proposed model concurrently make predictions for both the support image and the query image. With a cross-reference mechanism, our network can better find the co-occurrent objects in the two images, thus helping the few-shot segmentation task. We also develop a mask refinement module to recurrently refine the prediction of the foreground regions. For the $k$-shot learning, we propose to finetune parts of networks to take advantage of multiple labeled support images. Experiments on the PASCAL VOC 2012 dataset show that our network achieves state-of-the-art performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا