ﻻ يوجد ملخص باللغة العربية
Information transfer rates in optical communications may be dramatically increased by making use of spatially non-Gaussian states of light. Here we demonstrate the ability of deep neural networks to classify numerically-generated, noisy Laguerre-Gauss modes of up to 100 quanta of orbital angular momentum with near-unity fidelity. The scheme relies only on the intensity profile of the detected modes, allowing for considerable simplification of current measurement schemes required to sort the states containing increasing degrees of orbital angular momentum. We also present results that show the strength of deep neural networks in the classification of experimental superpositions of Laguerre-Gauss modes when the networks are trained solely using simulated images. It is anticipated that these results will allow for an enhancement of current optical communications technologies.
Modern fiber-optic coherent communications employ advanced spectrally-efficient modulation formats that require sophisticated narrow linewidth local oscillators (LOs) and complex digital signal processing (DSP). Here, we establish a novel approach to
An optical neural network (ONN) is a promising system due to its high-speed and low-power operation. Its linear unit performs a multiplication of an input vector and a weight matrix in optical analog circuits. Among them, a circuit with a multiple-la
This tutorial reviews the Holevo capacity limit as a universal tool to analyze the ultimate transmission rates in a variety of optical communication scenarios, ranging from conventional optically amplified fiber links to free-space communication with
Surface acoustic wave (SAW) is utilized in diverse fields ranging from physics, engineering, to biology, for transducing, sensing and processing various signals. Optical imaging of SAW provides valuable information since the amplitude and the phase o
We report an optical homogeneous linewidth of 580 $pm$ 20 Hz of Er$^{3+}$:Y$_2$O$_3$ ceramics at millikelvin temperatures, narrowest so far in rare-earth doped ceramics. We show slow spectral diffusion of $sim$2 kHz over a millisecond time scale. Tem