ﻻ يوجد ملخص باللغة العربية
As the cost of renewable energy falls below fossil fuels, the most important challenge to enable widespread sustainable power generation has become making renewables dispatchable. Low cost energy storage can provide this dispatchability, but there is no clear technology that can meet the need. Pumped hydroelectric and compressed air storage have low costs, but they are geographically constrained. Similarly, lithium-ion batteries are becoming ubiquitous, but even their lower bounding asymptote cost is too high to enable cost-competitive dispatchable renewables. Here, we introduce a concept based on thermal energy grid storage (TEGS) using a multijunction photovoltaic heat engine (MPV) with promising initial experimental results that could meet the low cost required to enable cost competitive dispatchable renewables. The approach exploits an important tradeoff between the accession of an extremely low cost per unit energy stored, by storing heat instead of electricity directly, while paying the penalty of a lower round trip efficiency. To understand why this tradeoff is advantageous, we first introduce a framework for evaluating storage technologies that treats round trip efficiency (RTE) as a variable, in addition to cost per unit energy stored (CPE) and cost per unit power (CPP). It is from this perspective that the TEGS-MPV concept offers a compelling economic proposition.
In this paper, we propose to model the energy consumption of smart grid households with energy storage systems as an intertemporal trading economy. Intertemporal trade refers to transaction of goods across time when an agent, at any time, is faced wi
We present a multijunction detailed balance model that includes the effects of luminescent coupling, light trapping and nonradiative recombination, suitable for treatment of multijunction solar cells and photonic power converters -- photovoltaic devi
Adding thermal conductivity enhancements to increase thermal power in solid-liquid phase-change thermal energy storage modules compromises volumetric energy density and often times reduces the mass and volume of active phase change material (PCM) by
Energy storage units (ESUs) enable several attractive features of modern smart grids such as enhanced grid resilience, effective demand response, and reduced bills. However, uncoordinated charging of ESUs stresses the power system and can lead to a b
Adopting thin Si wafers for PV reduces capital expenditure (capex) and manufacturing cost, and accelerates the growth of PV manufacturing. There are two key questions about thin Si today: (a) how much can we still benefit economically from thinning w