ﻻ يوجد ملخص باللغة العربية
We review algorithms for protein design in general. Although these algorithms have a rich combinatorial, geometric, and mathematical structure, they are almost never covered in computer science classes. Furthermore, many of these algorithms admit provable guarantees of accuracy, soundness, complexity, completeness, optimality, and approximation bounds. The algorithms represent a delicate and beautiful balance between discrete and continuous computation and modeling, analogous to that which is seen in robotics, computational geometry, and other fields in computational science. Finally, computer scientists may be unaware of the almost direct impact of these algorithms for predicting and introducing molecular therapies that have gone in a short time from mathematics to algorithms to software to predictions to preclinical testing to clinical trials. Indeed, the overarching goal of these algorithms is to enable the development of new therapeutics that might be impossible or too expensive to discover using experimental methods. Thus the potential impact of these algorithms on individual, community, and global health has the potential to be quite significant.
A general strategy is described for finding which amino acid sequences have native states in a desired conformation (inverse design). The approach is used to design sequences of 48 hydrophobic and polar aminoacids on three-dimensional lattice structu
Free energy landscapes decisively determine the progress of enzymatically catalyzed reactions[1]. Time-resolved macromolecular crystallography unifies transient-state kinetics with structure determination [2-4] because both can be determined from the
An innovative strategy for the optimal design of planar frames able to resist to seismic excitations is here proposed. The procedure is based on genetic algorithms (GA) which are performed according to a nested structure suitable to be implemented in
Model-based process design of ion-exchange simulated moving bed (IEX-SMB) chromatography for center-cut separation of proteins is studied. Use of nonlinear binding models that describe more accurate adsorption behaviours of macro-molecules could make
Motivation: The ability to generate massive amounts of sequencing data continues to overwhelm the processing capability of existing algorithms and compute infrastructures. In this work, we explore the use of hardware/software co-design and hardware a