ﻻ يوجد ملخص باللغة العربية
The phenomena observed at the Sun have a variety of unique radio signatures that can be used to diagnose the processes in the solar atmosphere. The insights provided by radio obervations are further enhanced when they are combined with observations from space-based telescopes. This special issue demonstrates the power of combination methodology at work and provides new results on i) type I solar radio bursts and thermal emission to study active regions; ii) type II and IV bursts to better understand the structure of coronal mass ejections; iii)~non-thermal gyro-synchrotron and/or type III bursts to improve characterization of particle acceleration in solar flares. The ongoing improvements in time, frequency, and spatial resolutions of ground-based telescopes reveal new levels of solar phenomena complexity and pose new questions.
Solar radio observations provide a unique diagnostic of the outer solar atmosphere. However, the inhomogeneous turbulent corona strongly affects the propagation of the emitted radio waves, so decoupling the intrinsic properties of the emitting source
The energy and spectral shape of radio bursts may help us understand the generation mechanism of solar eruptions, including solar flares, CMEs, eruptive filaments, and various scales of jets. The different kinds of flares may have different character
Radio waves are strongly scattered in the solar wind, so that their apparent sources seem to be considerably larger and shifted than the actual ones. Since the scattering depends on the spectrum of density turbulence, better understanding of the radi
Solar flares observed in the 200-400 GHz radio domain may exhibit a slowly varying and time-extended component which follows a short (few minutes) impulsive phase and which lasts for a few tens of minutes to more than one hour. The few examples discu
X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with