ﻻ يوجد ملخص باللغة العربية
With the ever-increasing demand for wireless traffic and quality of serives (QoS), wireless local area networks (WLANs) have developed into one of the most dominant wireless networks that fully influence human life. As the most widely used WLANs standard, Institute of Electrical and Electronics Engineers (IEEE) 802.11 will release the upcoming next generation WLANs standard amendment: IEEE 802.11ax. This article comprehensively surveys and analyzes the application scenarios, technical requirements, standardization process, key technologies, and performance evaluations of IEEE 802.11ax. Starting from the technical objectives and requirements of IEEE 802.11ax, this article pays special attention to high-dense deployment scenarios. After that, the key technologies of IEEE 802.11ax, including the physical layer (PHY) enhancements, multi-user (MU) medium access control (MU-MAC), spatial reuse (SR), and power efficiency are discussed in detail, covering both standardization technologies as well as the latest academic studies. Furthermore, performance requirements of IEEE 802.11ax are evaluated via a newly proposed systems and link-level integrated simulation platform (SLISP). Simulations results confirm that IEEE 802.11ax significantly improves the user experience in high-density deployment, while successfully achieves the average per user throughput requirement in project authorization request (PAR) by four times compared to the legacy IEEE 802.11. Finally, potential advancement beyond IEEE 802.11ax are discussed to complete this holistic study on the latest IEEE 802.11ax. To the best of our knowledge, this article is the first study to directly investigate and analyze the latest stable version of IEEE 802.11ax, and the first work to thoroughly and deeply evaluate the compliance of the performance requirements of IEEE 802.11ax.
Wi-Fi technology is continuously innovating to cater to the growing customer demands, driven by the digitalisation of everything, both in the home as well as the enterprise and hotspot spaces. In this article, we introduce to the wireless community t
IEEE 802.16m amends the IEEE 802.16 Wireless MAN-OFDMA specification to provide an advanced air interface for operation in licenced bands. It will meet the cellular layer requirements of IMT-Advanced next generation mobile networks. It will be design
Support of real-time applications that impose strict requirements on packet loss ratio and latency is an essential feature of the next generation Wi-Fi networks. Initially introduced in the 802.11ax amendment to the Wi-Fi standard, uplink OFDMA seems
We consider the scheduling and resource allocation problem in AP-initiated uplink OFDMA transmissions of IEEE 802.11ax networks. The uplink OFDMA resource allocation problem is known to be non-convex and difficult to solve in general. However, due to
In the Internet of Things scenarios, it is crucially important to provide low energy consumption of client devices. To address this challenge, new Wi-Fi standards introduce the Target Wake Time (TWT) mechanism. With TWT, devices transmit their data a