ﻻ يوجد ملخص باللغة العربية
It is well known that it is impossible to clone an arbitrary quantum state. However, this inability does not lead directly to no-cloning of quantum coherence. Here, we show that it is impossible to clone the coherence of an arbitrary quantum state which is a stronger statement than the no-cloning of quantum state. In particular, with ancillary system as machine state, we show that it is impossible to clone the coherence of states whose coherence is greater than the coherence of the known states on which the transformations are defined. Also, we characterize the class of states for which coherence cloning will be possible for a given choice of machine. Furthermore, we find the maximum range of states whose coherence can be cloned perfectly. The impossibility proof also holds when we do not include machine states.
Quantum no-cloning, the impossibility of perfectly cloning an arbitrary unknown quantum state, is one of the most fundamental limitations due to the laws of quantum mechanics, which underpin the physical security of quantum key distribution. Quantum
Coherence and entanglement are the two most crucial resources for various quantum information processing tasks. Here, we study the interplay of coherence and entanglement under the action of different three qubit quantum cloning operations. Consideri
We investigate the multiphoton states generated by high-gain optical parametric amplification of a single injected photon, polarization encoded as a qubit. The experiment configuration exploits the optimal phase-covariant cloning in the high gain reg
We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take $N$ identical replicas of a pure state in any dimension as input, and yield a collection o
We study machines that take N identical replicas of a pure qudit state as input and output a set of M_A clones of a given fidelity and another set of $M_B$ clones of another fidelity. The trade-off between these two fidelities is investigated, and nu