ﻻ يوجد ملخص باللغة العربية
We introduce a simple single-system game inspired by the Clauser-Horne-Shimony-Holt (CHSH) game. For qubit systems subjected to unitary gates and projective measurements, we prove that any strategy in our game can be mapped to a strategy in the CHSH game, which implies that Tsirelsons bound also holds in our setting. More generally, we show that the optimal success probability depends on the reversible or irreversible character of the gates, the quantum or classical nature of the system and the system dimension. We analyse the bounds obtained in light of Landauers principle, showing the entropic costs of the erasure associated with the game. This shows a connection between the reversibility in fundamental operations embodied by Landauers principle and Tsirelsons bound, that arises from the restricted physics of a unitarily-evolving single-qubit system.
We investigate the link between information and thermodynamics embodied by Landauers principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature re
We study Landauers Principle for Repeated Interaction Systems (RIS) consisting of a reference quantum system $mathcal{S}$ in contact with a structured environment $mathcal{E}$ made of a chain of independent quantum probes; $mathcal{S}$ interacts with
New concepts from nonequilibrium thermodynamics are used to show that Landauers principle can be understood in terms of time asymmetry in the dynamical randomness generated by the physical process of the erasure of digital information. In this way, L
Landauers principle states that erasure of each bit of information in a system requires at least a unit of energy $k_B T ln 2$ to be dissipated. In return, the blank bit may possibly be utilized to extract usable work of the amount $k_B T ln 2$, in k
The energy-level structure of a single atom strongly coupled to the mode of a high-finesse optical cavity is investigated. The atom is stored in an intracavity dipole trap and cavity cooling is used to compensate for inevitable heating. Two well-reso