ﻻ يوجد ملخص باللغة العربية
Distance-based tests, also called energy statistics, are leading methods for two-sample and independence tests from the statistics community. Kernel-based tests, developed from kernel mean embeddings, are leading methods for two-sample and independence tests from the machine learning community. A fixed-point transformation was previously proposed to connect the distance methods and kernel methods for the population statistics. In this paper, we propose a new bijective transformation between metrics and kernels. It simplifies the fixed-point transformation, inherits similar theoretical properties, allows distance methods to be exactly the same as kernel methods for sample statistics and p-value, and better preserves the data structure upon transformation. Our results further advance the understanding in distance and kernel-based tests, streamline the code base for implementing these tests, and enable a rich literature of distance-based and kernel-based methodologies to directly communicate with each other.
When analyzing empirical data, we often find that global linear models overestimate the number of parameters required. In such cases, we may ask whether the data lies on or near a manifold or a set of manifolds (a so-called multi-manifold) of lower d
For many machine learning problem settings, particularly with structured inputs such as sequences or sets of objects, a distance measure between inputs can be specified more naturally than a feature representation. However, most standard machine mode
We propose a probabilistic kernel approach for preferential learning from pairwise duelling data using Gaussian Processes. Different from previous methods, we do not impose a total order on the item space, hence can capture more expressive latent pre
For a certain scaling of the initialization of stochastic gradient descent (SGD), wide neural networks (NN) have been shown to be well approximated by reproducing kernel Hilbert space (RKHS) methods. Recent empirical work showed that, for some classi
Wasserstein distance plays increasingly important roles in machine learning, stochastic programming and image processing. Major efforts have been under way to address its high computational complexity, some leading to approximate or regularized varia