ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Gradient Descent with Exponential Convergence Rates of Expected Classification Errors

222   0   0.0 ( 0 )
 نشر من قبل Atsushi Nitanda
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider stochastic gradient descent and its averaging variant for binary classification problems in a reproducing kernel Hilbert space. In the traditional analysis using a consistency property of loss functions, it is known that the expected classification error converges more slowly than the expected risk even when assuming a low-noise condition on the conditional label probabilities. Consequently, the resulting rate is sublinear. Therefore, it is important to consider whether much faster convergence of the expected classification error can be achieved. In recent research, an exponential convergence rate for stochastic gradient descent was shown under a strong low-noise condition but provided theoretical analysis was limited to the squared loss function, which is somewhat inadequate for binary classification tasks. In this paper, we show an exponential convergence of the expected classification error in the final phase of the stochastic gradient descent for a wide class of differentiable convex loss functions under similar assumptions. As for the averaged stochastic gradient descent, we show that the same convergence rate holds from the early phase of training. In experiments, we verify our analyses on the $L_2$-regularized logistic regression.



قيم البحث

اقرأ أيضاً

Although kernel methods are widely used in many learning problems, they have poor scalability to large datasets. To address this problem, sketching and stochastic gradient methods are the most commonly used techniques to derive efficient large-scale learning algorithms. In this study, we consider solving a binary classification problem using random features and stochastic gradient descent. In recent research, an exponential convergence rate of the expected classification error under the strong low-noise condition has been shown. We extend these analyses to a random features setting, analyzing the error induced by the approximation of random features in terms of the distance between the generated hypothesis including population risk minimizers and empirical risk minimizers when using general Lipschitz loss functions, to show that an exponential convergence of the expected classification error is achieved even if random features approximation is applied. Additionally, we demonstrate that the convergence rate does not depend on the number of features and there is a significant computational benefit in using random features in classification problems because of the strong low-noise condition.
The superior performance of ensemble methods with infinite models are well known. Most of these methods are based on optimization problems in infinite-dimensional spaces with some regularization, for instance, boosting methods and convex neural netwo rks use $L^1$-regularization with the non-negative constraint. However, due to the difficulty of handling $L^1$-regularization, these problems require early stopping or a rough approximation to solve it inexactly. In this paper, we propose a new ensemble learning method that performs in a space of probability measures, that is, our method can handle the $L^1$-constraint and the non-negative constraint in a rigorous way. Such an optimization is realized by proposing a general purpose stochastic optimization method for learning probability measures via parameterization using transport maps on base models. As a result of running the method, a transport map to output an infinite ensemble is obtained, which forms a residual-type network. From the perspective of functional gradient methods, we give a convergence rate as fast as that of a stochastic optimization method for finite dimensional nonconvex problems. Moreover, we show an interior optimality property of a local optimality condition used in our analysis.
In the context of statistical supervised learning, the noiseless linear model assumes that there exists a deterministic linear relation $Y = langle theta_*, X rangle$ between the random output $Y$ and the random feature vector $Phi(U)$, a potentially non-linear transformation of the inputs $U$. We analyze the convergence of single-pass, fixed step-size stochastic gradient descent on the least-square risk under this model. The convergence of the iterates to the optimum $theta_*$ and the decay of the generalization error follow polynomial convergence rates with exponents that both depend on the regularities of the optimum $theta_*$ and of the feature vectors $Phi(u)$. We interpret our result in the reproducing kernel Hilbert space framework. As a special case, we analyze an online algorithm for estimating a real function on the unit interval from the noiseless observation of its value at randomly sampled points; the convergence depends on the Sobolev smoothness of the function and of a chosen kernel. Finally, we apply our analysis beyond the supervised learning setting to obtain convergence rates for the averaging process (a.k.a. gossip algorithm) on a graph depending on its spectral dimension.
196 - Jiaming Xu , Hanjing Zhu 2021
There has been a recent surge of interest in understanding the convergence of gradient descent (GD) and stochastic gradient descent (SGD) in overparameterized neural networks. Most previous works assume that the training data is provided a priori in a batch, while less attention has been paid to the important setting where the training data arrives in a stream. In this paper, we study the streaming data setup and show that with overparamterization and random initialization, the prediction error of two-layer neural networks under one-pass SGD converges in expectation. The convergence rate depends on the eigen-decomposition of the integral operator associated with the so-called neural tangent kernel (NTK). A key step of our analysis is to show a random kernel function converges to the NTK with high probability using the VC dimension and McDiarmids inequality.
We analyze the convergence of the averaged stochastic gradient descent for overparameterized two-layer neural networks for regression problems. It was recently found that a neural tangent kernel (NTK) plays an important role in showing the global con vergence of gradient-based methods under the NTK regime, where the learning dynamics for overparameterized neural networks can be almost characterized by that for the associated reproducing kernel Hilbert space (RKHS). However, there is still room for a convergence rate analysis in the NTK regime. In this study, we show that the averaged stochastic gradient descent can achieve the minimax optimal convergence rate, with the global convergence guarantee, by exploiting the complexities of the target function and the RKHS associated with the NTK. Moreover, we show that the target function specified by the NTK of a ReLU network can be learned at the optimal convergence rate through a smooth approximation of a ReLU network under certain conditions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا