ﻻ يوجد ملخص باللغة العربية
We study $2k$-factors in $(2r+1)$-regular graphs. Hanson, Loten, and Toft proved that every $(2r+1)$-regular graph with at most $2r$ cut-edges has a $2$-factor. We generalize their result by proving for $kle(2r+1)/3$ that every $(2r+1)$-regular graph with at most $2r-3(k-1)$ cut-edges has a $2k$-factor. Both the restriction on $k$ and the restriction on the number of cut-edges are sharp. We characterize the graphs that have exactly $2r-3(k-1)+1$ cut-edges but no $2k$-factor. For $k>(2r+1)/3$, there are graphs without cut-edges that have no $2k$-factor, as studied by Bollobas, Saito, and Wormald.
The Ising antiferromagnet is an important statistical physics model with close connections to the {sc Max Cut} problem. Combining spatial mixing arguments with the method of moments and the interpolation method, we pinpoint the replica symmetry break
In this article we have derived the minimum order of an odd regular graph such that the graph has no matching. We have observed that how it is different from the case of even regular graphs. We have checked the consistency of the derived result with Petersens theorem.
A degree-regular triangulation is one in which each vertex has identical degree. Our main result is that any such triangulation of a (possibly non-compact) surface $S$ is geometric, that is, it is combinatorially equivalent to a geodesic triangulatio
In this paper infinite families of linear binary nested completely regular codes are constructed. They have covering radius $rho$ equal to $3$ or $4$, and are $1/2^i$-th parts, for $iin{1,ldots,u}$ of binary (respectively, extended binary) Hamming co
Szemeredis Regularity Lemma is a very useful tool of extremal combinatorics. Recently, several refinements of this seminal result were obtained for special, more structured classes of graphs. We survey these results in their rich combinatorial contex