ترغب بنشر مسار تعليمي؟ اضغط هنا

Regimes of magnetic reconnection in colliding laser-produced magnetized plasma bubbles

610   0   0.0 ( 0 )
 نشر من قبل Kirill Lezhnin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using particle-in-cell simulations. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the 2D simulations demonstrate a rich variety of reconnection behavior and show the coupling between magnetic reconnection and the global hydrodynamical evolution of the system. We consider both the collision between two radially expanding bubbles where reconnection is seeded by the pre-existing X-point, and the collision between two flows in a quasi-1D geometry with initially anti-parallel fields where reconnection must be initiated by the tearing instability. In both geometries, at a baseline case of low-collisionality and low background density, the current sheet is strongly compressed to below scale of the ion-skin-depth scale, and rapid, multi-plasmoid reconnection results. Increasing the plasma resistivity, we observe a collisional slow-down of reconnection and stabilization of plasmoid instability for Lundquist numbers less than approximately $S sim 10^3$. Secondly, increasing the background plasma density modifies the compressibility of the plasma and can also slow-down or even prevent reconnection, even in completely collisionless regimes, by preventing the current sheet from thinning down to the scale of the ion-skin depth. These results have implications for understanding recent and future experiments, and signatures for these processes for proton-radiography diagnostics of these experiments are discussed.



قيم البحث

اقرأ أيضاً

Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pile-up at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfven time.
We developed an experimental platform for studying magnetic reconnection in an external magnetic field with simultaneous measurements of plasma imaging, flow velocity, and magnetic-field variation. Here, we investigate the stagnation and acceleration in counter-streaming plasmas generated by high-power laser beams. A plasma flow perpendicular to the initial flow directions is measured with laser Thomson scattering. The flow is, interestingly, accelerated toward the high-density region, which is opposite to the direction of the acceleration by pressure gradients. This acceleration is possibly interpreted by the interaction of two magnetic field loops initially generated by Biermann battery effect, resulting in a magnetic reconnection forming a single field loop and additional acceleration by a magnetic tension force.
We consider backscattering of laser pulses in strongly-magnetized plasma mediated by kinetic magnetohydrodynamic waves. Magnetized low-frequency scattering, which can occur when the external magnetic field is neither perpendicular nor parallel to the laser propagation direction, provides an instability growth rate higher than Raman scattering and a frequency downshift comparable to Brillouin scattering. In addition to the high growth rate, which allows smaller plasmas, and the 0.1-2% frequency downshift, which permits a wide range of pump sources, MLF scattering is an ideal candidate for amplification because the process supports an extremely large bandwidth, which particle-in-cell simulations show produces ultrashort durations. Under some conditions, MLF scattering also becomes the dominant spontaneous backscatter instability, with implications for magnetized laser-confinement experiments.
Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magnetized implosion experiments. In addition, magnetized scattering can be exploited to improve the performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields, laser-plasma interactions begin to enter the relativistic-quantum regime. Using quantum electrodynamics, we compute modified wave dispersion relation, which enables correct interpretation of Faraday rotation measurements of strong magnetic fields.
80 - B. Khiar , G. Revet , A. Ciardi 2019
Magnetized laser-produced plasmas are central to many novel laboratory astrophysics and inertial confinement fusion studies, as well as in industrial applications. Here we provide the first complete description of the three-dimensional dynamics of a laser-driven plasma plume expanding in a 20 T transverse magnetic field. The plasma is collimated by the magnetic field into a slender, rapidly elongating slab, whose plasma-vacuum interface is unstable to the growth of the classical, fluid-like magnetized Rayleigh-Taylor instability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا