ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergent c-axis magnetic helix in manganite-nickelate superlattices

91   0   0.0 ( 0 )
 نشر من قبل Mark Dean
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the magnetic order in (La2/3Sr1/3MnO3)9/(LaNiO3)3 superlattices is investigated using x-ray resonant magnetic reflectometry. We observe a new c-axis magnetic helix state in the (LaNiO3)3 layers that had never been reported in nickelates, and which mediates the ~130deg magnetic coupling between the ferromagnetic (La2/3Sr1/3MnO3)9 layers, illustrating the power of x-rays for discovering the magnetic state of complex oxide interfaces. Resonant inelastic x-ray scattering and x-ray absorption spectroscopy show that Ni-O ligand hole states from bulk LaNiO3 are mostly filled due to interfacial electron transfer from Mn, driving the Ni orbitals closer to an atomic-like 3d8 configuration. We discuss the constraints imposed by this electronic configuration to the microscopic origin of the observed magnetic structure. The presence of a magnetic helix in (La2/3Sr1/3MnO3)9/(LaNiO3)3 is crucial for modeling the potential spintronic functionality of this system and may be important for designing emergent magnetism in novel devices in general.



قيم البحث

اقرأ أيضاً

Heterostructure engineering provides an efficient way to obtain several unconventional phases of LaNiO3, which is otherwise paramagnetic, metallic in bulk form. In this work, a new class of short periodic superlattices, consisting of LaNiO3 and EuNiO 3 have been grown by pulsed laser interval deposition to investigate the effect of structural symmetry mismatch on the electronic and magnetic behaviors. Synchrotron based soft and hard X-ray resonant scattering experiments have found that these heterostructures undergo simultaneous electronic and magnetic transitions. Most importantly, LaNiO3 within these artificial structures exhibits a new antiferromagnetic, charge ordered insulating phase. This work demonstrates that emergent properties can be obtained by engineering structural symmetry mismatch across a heterointerface.
We report a modulation of the in-plane magnetotransport in artificial manganite superlattice (SL) [(NdMnO3)n /(SrMnO3)n /(LaMnO3)n]m by varying the layer thickness n while keeping the total thickness of the structure constant. Charge transport in the se heterostructures is confined to the interfaces and occurs via variable range hopping (VRH). Upon increasing n, the interfacial separation rises, leading to a suppression of the electrostatic screening between carriers of neighboring interfaces and the opening of a Coulomb gap at the Fermi level (EF). The high-field magnetoresistance (MR) is universally negative due to progressive spin alignment. However at a critical thickness of n=5 unit cells (u.c.), an exchange field coupling between ferromagnetically ordered interfaces results in positive MR at low magnetic field (H). Our results demonstrate the ability to geometrically tune the electrical transport between regimes dominated by either charge or spin correlations.
We have used resonant x-ray diffraction to develop a detailed description of antiferromagnetic ordering in epitaxial superlattices based on two-unit-cell thick layers of the strongly correlated metal LaNiO3. We also report reference experiments on th in films of PrNiO3 and NdNiO3. The resulting data indicate a spiral state whose polarization plane can be controlled by adjusting the Ni d-orbital occupation via two independent mechanisms: epitaxial strain and quantum confinement of the valence electrons. The data are discussed in the light of recent theoretical predictions.
Oxygen vacancies play a crucial role in the control of the electronic, magnetic, ionic, and transport properties of functional oxide perovskites. Rare earth nickelates (RENiO$_{3-x}$) have emerged over the years as a rich platform to study the interp lay between the lattice, the electronic structure, and ordered magnetism. In this study, we investigate the evolution of the electronic and magnetic structure in thin films of RENiO$_{3-x}$, using a combination of X-ray absorption spectroscopy and imaging, resonant X-ray scattering, and extended multiplet ligand field theory modeling. We find that oxygen vacancies modify the electronic configuration within the Ni-O orbital manifolds, leading to a dramatic evolution of long-range electronic transport pathways despite the absence of nanoscale phase separation. Remarkably, magnetism is robust to substantial levels of carrier doping, and only a moderate weakening of the $(1/4, 1/4, 1/4)_{pc}$ antiferromagnetic order parameter is observed, whereas the magnetic transition temperature is largely unchanged. Only at a certain point long-range magnetism is abruptly erased without an accompanying structural transition. We propose the progressive disruption of the 3D magnetic superexchange pathways upon introduction of point defects as the mechanism behind the sudden collapse of magnetic order in oxygen-deficient nickelates. Our work demonstrates that, unlike most other oxides, ordered magnetism in RENiO$_{3-x}$ is mostly insensitive to carrier doping. The sudden collapse of ordered magnetism upon oxygen removal may provide a new mechanism for solid-state magneto-ionic switching and new applications in antiferromagnetic spintronics.
524 - G. Berner , M. Sing , F. Pfaff 2014
The electronic and magnetic properties of epitaxial LaNiO3/LaAlO3 superlattices can be tuned by layer thickness and substrate-induced strain. Here, we report on direct measurements of the k-space-resolved electronic structure of buried nickelate laye rs in superlattices under compressive strain by soft x-ray photoemission. After disentangling strong extrinsic contributions to the angle-dependent signal caused by photoelectron diffraction, we are able to extract Fermi surface information from our data. We find that with decreasing LaNiO3 thickness down to two unit cells (2 uc) quasiparticle coherence becomes strongly reduced, in accord with the dimension-induced metal-to-insulator transition seen in transport measurements. Nonetheless, on top of a strongly incoherent background a residual Fermi surface can be identified in the 2 uc superlattice whose nesting properties are consistent with the spin-density wave (SDW) instability recently reported. The overall behavior of the Ni 3d spectra and the absence of a complete gap opening indicate that the SDW phase is dominated by strong order parameter fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا