ﻻ يوجد ملخص باللغة العربية
Pseudorandom sequences are used extensively in communications and remote sensing. Correlation provides one measure of pseudorandomness, and low correlation is an important factor determining the performance of digital sequences in applications. We consider the problem of constructing pairs $(f,g)$ of sequences such that both $f$ and $g$ have low mean square autocorrelation and $f$ and $g$ have low mean square mutual crosscorrelation. We focus on aperiodic correlation of binary sequences, and review recent contributions along with some historical context.
In this study, we propose partitioned complementary sequences (CSs) where the gaps between the clusters encode information bits to achieve low peak-to-average-power ratio (PAPR) orthogonal frequency division multiplexing (OFDM) symbols. We show that
Pairs of binary sequences formed using linear combinations of multiplicative characters of finite fields are exhibited that, when compared to random sequence pairs, simultaneously achieve significantly lower mean square autocorrelation values (for ea
In this study, we propose two schemes for uplink control channels based on non-contiguous complementary sequences (CSs) where the peak-to-average-power ratio (PAPR) of the resulting orthogonal frequency division multiplexing (OFDM) signal is always l
A class of binary sequences with period $2p$ is constructed using generalized cyclotomic classes, and their linear complexity, minimal polynomial over ${mathbb{F}_{{q}}}$ as well as 2-adic complexity are determined using Gauss period and group ring t
In this paper, we determine the 4-adic complexity of the balanced quaternary sequences of period $2p$ and $2(2^n-1)$ with ideal autocorrelation defined by Kim et al. (ISIT, pp. 282-285, 2009) and Jang et al. (ISIT, pp. 278-281, 2009), respectively. O