Optically controlling the emission chirality of microlasers


الملخص بالإنكليزية

Orbital angular momentum (OAM) carried by helical light beams is an unbounded degree of freedom of photons that offers a promising playground in modern photonics. So far, integrated sources of coherent light carrying OAM are based on resonators whose design imposes a single, non-tailorable chirality of the wavefront (i.e. clockwise or counter clockwise vortices). Here, we propose and demonstrate the realization of an integrated microlaser where the chirality of the wavefront can be optically controlled. Importantly, the scheme that we use, based on an effective spin-orbit coupling of photons in a semiconductor microcavity, can be extended to different laser architectures, thus paving the way to the realization of a new generation of OAM microlasers with tunable chirality.

تحميل البحث