ترغب بنشر مسار تعليمي؟ اضغط هنا

The scale of homogeneity in the local Universe with the ALFALFA catalogue

194   0   0.0 ( 0 )
 نشر من قبل Felipe Avila
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the scaled counts in spherical caps $mathcal{N}(<theta)$ and the fractal correlation dimension $ mathcal{D}_{2}(theta) $ procedures to search for a transition scale to homogeneity in the local universe as given by the ALFALFA catalogue (a sample of extragalactic HI line sources, in the redshift range $0 < z < 0.06$). Our analyses, in the 2-dimensional sky projected data, show a transition to homogeneity at $theta_H = 16.49^{circ} pm 0.29^{circ}$, in remarkable accordance with the angular scale expected from simulations, a result that strengthens the validity of the cosmological principle in the local universe. We test the robustness of our results by analysing the data sample using thr



قيم البحث

اقرأ أيضاً

We probe the angular scale of homogeneity in the local Universe using blue galaxies from the SDSS survey as a cosmological tracer. Through the scaled counts in spherical caps, $ mathcal{N}(<theta) $, and the fractal correlation dimension, $mathcal{D} _{2}(theta)$, we find an angular scale of transition to homogeneity for this sample of $theta_{text{H}} = 22.19^{circ} pm 1.02^{circ}$. A comparison of this measurement with another obtained using a different cosmic tracer at a similar redshift range ($z < 0.06$), namely, the HI extragalactic sources from the ALFALFA catalogue, confirms that both results are in excellent agreement (taking into account the corresponding bias correction). We also perform tests to asses the robustness of our results. For instance, we test if the size of the surveyed area is large enough to identify the transition scale we search for, and also we investigate a reduced sample of blue galaxies, obtaining in both cases a similar angular scale for the transition to homogeneity. Our results, besides confirming the existence of an angular scale of transition to homogeneity in different cosmic tracers present in the local Universe, show that the observed angular scale $theta_{text{H}}$ agrees well with what is expected in the $Lambda$CDM scenario. Although we can not prove spatial homogeneity within the approach followed, our results provide one more evidence of it, strengthening the validity of the Cosmological Principle.
We investigate the growth rate of structures in the local Universe. For this, we use as a cosmological tracer the HI line extra-galactic sources from the Arecibo Legacy Fast ALFA (ALFALFA) survey to obtain a measurement of the normalized growth rate parameter, $f sigma_{8}$, considered a powerful tool to constrain alternative models of gravity. For these analyses, we calculate the Local Group velocity due to the matter structures distribution in the ALFALFA catalogue and compare it with the Local Group velocity relative to the Cosmic Microwave Background frame to obtain the velocity scale parameter, $beta$. Using Monte Carlo realizations and log-normal simulations, our methodology quantifies the errors introduced by shot-noise and partial sky coverage of the analysed data. The measurement of the velocity scale parameter $beta$, and the calculation of the matter fluctuation of the cosmological tracer, $sigma_{8}^{text{tr}}$, lead us to $f sigma_{8} = 0.46 pm 0.06$ at $bar{z} = 0.013$, in good agreement (at $1 sigma$ level) with the value expected in the $Lambda$CDM concordance model. In addition, our analyses of the ALFALFA sample also provide a measurement of the growth rate of structures $f ,=, 0.56 pm 0.07$, at $bar{z} = 0.013$.
151 - Kambiz Fathi 2011
Disk scale length and central surface brightness for a sample of about 29955 bright disk galaxies from the Sloan Digital Sky Survey have been analysed. Cross correlation of the SDSS sample with the LEDA catalogue allowed us to investigate the variati on of the scale lengths for different types of disk/spiral galaxies and present distributions and typical trends of scale lengths all the SDSS bands with linear relations that indicate the relation that connect scale lengths in one passband to another. We use the volume corrected results in the r-band and revisit the relation between these parameters and the galaxy morphology. The derived scale lengths presented here are representative for a typical galaxy mass of 10^10.8 solarmasses, and the RMS dispersion is larger for more massive galaxies. We analyse the scale-length-central disk brightness plane and further investigate the Freeman Law and confirm that it indeed defines an upper limit for disk central surface brightness in bright disks (r<17.0), and that disks in late type spirals (T > 6) have fainter central surface brightness. Our results are based on a sample of galaxies in the local universe (z< 0.3) that is two orders of magnitudes larger than any sample previously studied, and deliver statistically significant results that provide a comprehensive test bed for future theoretical studies and numerical simulations of galaxy formation and evolution.
A Large Quasar Group (LQG) of particularly large size and high membership has been identified in the DR7QSO catalogue of the Sloan Digital Sky Survey. It has characteristic size (volume^1/3) ~ 500 Mpc (proper size, present epoch), longest dimension ~ 1240 Mpc, membership of 73 quasars, and mean redshift <z> = 1.27. In terms of both size and membership it is the most extreme LQG found in the DR7QSO catalogue for the redshift range 1.0 <= z <= 1.8 of our current investigation. Its location on the sky is ~ 8.8 deg north (~ 615 Mpc projected) of the Clowes & Campusano LQG at the same redshift, <z> = 1.28, which is itself one of the more extreme examples. Their boundaries approach to within ~ 2 deg (~ 140 Mpc projected). This new, huge LQG appears to be the largest structure currently known in the early universe. Its size suggests incompatibility with the Yadav et al. scale of homogeneity for the concordance cosmology, and thus challenges the assumption of the cosmological principle.
The assumption that the Universe, on sufficiently large scales, is homogeneous and isotropic is crucial to our current understanding of cosmology. In this paper we test if the observed galaxy distribution is actually homogeneous on large scales. We h ave carried out a multifractal analysis of the galaxy distribution in a volume limited subsample from the SDSS DR6. This considers the scaling properties of different moments of galaxy number counts in spheres of varying radius $r$ centered on galaxies. This analysis gives the spectrum of generalized dimension $D_q(r)$, where $q >0$ quantifies the scaling properties in overdense regions and $q<0$ in underdense regions. We expect $D_q(r)=3$ for a homogeneous, random point distribution. In our analysis we have determined $D_q(r)$ in the range $-4 le q le 4$ and $7 le r le 98 h^{-1} {rm Mpc}$. In addition to the SDSS data we have analysed several random samples which are homogeneous by construction. Simulated galaxy samples generated from dark matter N-body simulations and the Millennium Run were also analysed. The SDSS data is considered to be homogeneous if the measured $D_q$ is consistent with that of the random samples. We find that the galaxy distribution becomes homogeneous at a length-scale between 60 and $70 h^{-1} {rm Mpc}$. The galaxy distribution, we find, is homogeneous at length-scales greater than $70 h^{-1} {rm Mpc}$. This is consistent with earlier works which find the transition to homogeneity at around $70 h^{-1} {rm Mpc}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا