ﻻ يوجد ملخص باللغة العربية
We present a comparison between several simulation codes designed to study the core-collapse supernova mechanism. We pay close attention to controlling the initial conditions and input physics in order to ensure a meaningful and informative comparison. Our goal is three-fold. First, we aim to demonstrate the current level of agreement between various groups studying the core-collapse supernova central engine. Second, we desire to form a strong basis for future simulation codes and methods to compare to. Lastly, we want this work to be a stepping stone for future work exploring more complex simulations of core-collapse supernovae, i.e., simulations in multiple dimensions and simulations with modern neutrino and nuclear physics. We compare the early (first ~500ms after core bounce) spherically-symmetric evolution of a 20 solar mass progenitor star from six different core-collapse supernovae codes: 3DnSNe-IDSA, AGILE-BOLTZTRAN, FLASH, F{sc{ornax}}, GR1D, and PROMETHEUS-VERTEX. Given the diversity of neutrino transport and hydrodynamic methods employed, we find excellent agreement in many critical quantities, including the shock radius evolution and the amount of neutrino heating. Our results provide an excellent starting point from which to extend this comparison to higher dimensions and compare the development of hydrodynamic instabilities that are crucial to the supernova explosion mechanism, such as turbulence and convection.
We present spherically symmetric (1D) and axisymmetric (2D) supernova simulations for a convection-dominated 9 Msun and a 20 Msun progenitor that develops violent activity by the standing-accretion-shock instability (SASI). We compare in detail the A
For finite chemical potential effective models of QCD predict a first order phase transition. In favour for the search of such a phase transition in nature, we construct an equation of state for strange quark matter based on the MIT bag model. We app
We have conducted nineteen state-of-the-art 3D core-collapse supernova simulations spanning a broad range of progenitor masses. This is the largest collection of sophisticated 3D supernova simulations ever performed. We have found that while the majo
In a previously presented proof-of-principle study we established a parametrized spherically symmetric explosion method (PUSH) that can reproduce many features of core-collapse supernovae. The present paper goes beyond a specific application that is
An important result in core-collapse supernova (CCSN) theory is that spherically-symmetric, one-dimensional simulations routinely fail to explode, yet multi-dimensional simulations often explode. Numerical investigations suggest that turbulence eases