ﻻ يوجد ملخص باللغة العربية
Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost $delta$ and $lambda$, respectively. We show that the problem is polynomial-time solvable when $delta leq lambda$ (via LCA-mapping), while if $delta > lambda$ the problem is NP-hard, even when $lambda = 0$ and a single gene tree is given, solving a long standing open problem on the complexity of the reconciliation problem. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are $delta/lambda$ and the number $d$ of segmental duplications, of time complexity $O(lceil frac{delta}{lambda} rceil^{d} cdot n cdot frac{delta}{lambda})$. Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or refute hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes.
Segmental duplications (SDs), or low-copy repeats (LCR), are segments of DNA greater than 1 Kbp with high sequence identity that are copied to other regions of the genome. SDs are among the most important sources of evolution, a common cause of genom
Empirical observations show that ecological communities can have a huge number of coexisting species, also with few or limited number of resources. These ecosystems are characterized by multiple type of interactions, in particular displaying cooperat
Given a gene tree and a species tree, ancestral configurations represent the combinatorially distinct sets of gene lineages that can reach a given node of the species tree. They have been introduced as a data structure for use in the recursive comput
More than 300,000 new cases worldwide are being diagnosed with oral cancer annually. Complexity of oral cancer renders designing drug targets very difficult. We analyse protein-protein interaction network for the normal and oral cancer tissue and det