ﻻ يوجد ملخص باللغة العربية
Core-level X-ray Photoelectron Spectroscopy (XPS) is often used to study the surfaces of heterogeneous copper-based catalysts, but the interpretation of measured spectra, in particular the assignment of peaks to adsorbed species, can be extremely challenging. In this study we demonstrate that first principles calculations using the delta Self Consistent Field (delta-SCF) method can be used to guide the analysis of experimental core-level spectra of complex surfaces relevant to heterogeneous catalysis. Specifically, we calculate core-level binding energy shifts for a series of adsorbates on Cu(111) and show that the resulting C1s and O1s binding energy shifts for adsorbed CO, CO2, C2H4, HCOO, CH3O, H2O, OH and a surface oxide on Cu(111) are in good overall agreement with the experimental literature. In the few cases where the agreement is less good, the theoretical results may indicate the need to re-examine experimental peak assignments.
Core-electron x-ray photoelectron spectroscopy is a powerful technique for studying the electronic structure and chemical composition of molecules, solids and surfaces. However, the interpretation of measured spectra and the assignment of peaks to at
We investigate by first-principles simulations the resonant electron-transfer lifetime from the excited state of an organic adsorbate to a semiconductor surface, namely isonicotinic acid on rutile TiO$_2$(110). The molecule-substrate interaction is d
Theoretical calculations of core electron binding energies are important for aiding the interpretation of experimental core level photoelectron spectra. In previous work, the $Delta$-Self-Consistent-Field ($Delta$-SCF) method based on density functio
We present a method to efficiently combine the computation of electron-electron and electron-phonon self-energies, which enables the evaluation of electron-phonon coupling at the $G_0W_0$ level of theory for systems with hundreds of atoms. In additio
We present an ab initio study of the interface energies of cubic yttria-stabilized zirconia (YSZ) epitaxial layers on a (0001)_{alpha-Al_2O_3} substrate. The interfaces are modelled using a supercell geometry and the calculations are carried out in t