ترغب بنشر مسار تعليمي؟ اضغط هنا

A TESS Dress Rehearsal: Planetary Candidates and Variables from K2 Campaign 17

105   0   0.0 ( 0 )
 نشر من قبل Ian Crossfield
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We produce light curves for all ~34,000 targets observed with K2 in Campaign 17 (C17), identifying 34 planet candidates, 184 eclipsing binaries, and 222 other periodic variables. The location of the C17 field means follow-up can begin immediately now that the campaign has concluded and interesting targets have been identified. The C17 field has a large overlap with C6, so this latest campaign also offers a rare opportunity to study a large number of targets already observed in a previous K2 campaign. The timing of the C17 data release, shortly before science operations begin with the Transiting Exoplanet Survey Satellite (TESS), also lets us exercise some of the tools and methods developed for identification and dissemination of planet candidates from TESS. We find excellent agreement between these results and those identified using only K2-based tools. Among our planet candidates are several planet candidates with sizes < 4 R_E and orbiting stars with KepMag < 10 (indicating good RV targets of the sort TESS hopes to find) and a Jupiter-sized single-transit event around a star already hosting a 6 d planet candidate.



قيم البحث

اقرأ أيضاً

Given that Campaign 16 of the K2 mission is one of just two K2 campaigns observed so far in forward-facing mode, which enables immediate follow-up observations from the ground, we present a catalog of interesting targets identified through photometry alone. Our catalog includes 30 high-quality planet candidates (showing no signs of being non-planetary in nature), 48 more ambiguous events that may be either planets or false positives, 164 eclipsing binaries, and 231 other regularly periodic variable sources. We have released light curves for all targets in C16, and have also released system parameters and transit vetting plots for all interesting candidates identified in this paper. Of particular interest is a candidate planet orbiting the bright F dwarf HD 73344 (V=6.9, K=5.6) with an orbital period of 15 days. If confirmed, this object would correspond to a $2.56 pm 0.18 R_oplus$ planet and would likely be a favorable target for radial velocity characterization. This paper is intended as a rapid release of planet candidates, eclipsing binaries and other interesting periodic variables to maximize the scientific yield of this campaign, and as a test run for the upcoming TESS mission, whose frequent data releases call for similarly rapid candidate identification and efficient follow-up.
The extended Kepler mission, K2, is now providing photometry of new fields every three months in a search for transiting planets. In a recent study, Foreman-Mackey and collaborators presented a list of 36 planet candidates orbiting 31 stars in K2 Cam paign 1. In this contribution, we present stellar and planetary properties for all systems. We combine ground-based seeing-limited survey data and adaptive optics imaging with an automated transit analysis scheme to validate 21 candidates as planets, 17 for the first time, and identify 6 candidates as likely false positives. Of particular interest is K2-18 (EPIC 201912552), a bright (K=8.9) M2.8 dwarf hosting a 2.23 pm 0.25 R_Earth planet with T_eq = 272 pm 15 K and an orbital period of 33 days. We also present two new open-source software packages which enable this analysis. The first, isochrones, is a flexible tool for fitting theoretical stellar models to observational data to determine stellar properties using a nested sampling scheme to capture the multimodal nature of the posterior distributions of the physical parameters of stars that may plausibly be evolved. The second is vespa, a new general-purpose procedure to calculate false positive probabilities and statistically validate transiting exoplanets.
We analyzed the photometry of 20038 cool stars from campaigns 12, 13, 14 and 15 of the K2 mission in order to detect, characterize and validate new planetary candidates transiting low-mass stars. We present a catalogue of 25 new periodic transit-like signals in 22 stars, of which we computed the parameters of the stellar host for 19 stars and the planetary parameters for 21 signals. We acquired speckle and AO images, and also inspected archival Pan-STARRS1 images and Gaia DR2 to discard the presence of close stellar companions and to check possible transit dilutions due to nearby stars. False positive probability (FPP) was computed for 22 signals, obtaining FPP < $1%$ for 17. We consider 12 of them as statistically validated planets. One signal is a false positive and the remaining 12 signals are considered as planet candidates. 20 signals have orbital period P$_{rm orb} < 10$ $d$, 2 have $10$ $d < $ P$_{rm orb} < 20$ $d$ and 3 have P$_{rm orb} > 20$ $d$. Regarding radii, 11 candidates and validated planets have computed radius R $<2 R_{oplus}$, 9 have $2 R_{oplus} <$ R $< 4 R_{oplus}$, and 1 has R $>4 R_{oplus}$. 2 validated planets and 2 candidates are located in moderately bright stars ($m_{kep}<13$) and 2 validated planets and 3 candidates have derived orbital radius within the habitable zone according to optimistic models. Of special interest is the validated warm super-Earth EPIC 248616368b (T$rm_{eq} = 318^{+24}_{-43} , K$, S$_{rm p} = 1.7pm 0.2 , S_{oplus}$, R$_{rm p} = 2.1pm 0.1 , R_{oplus} $), located in a m$rm_{kep}$ = 14.13 star.
We confirm the planetary nature of two transiting hot Jupiters discovered by the Kepler spacecrafts K2 extended mission in its Campaign 4, using precise radial velocity measurements from FIES@NOT, HARPS-N@TNG, and the coude spectrograph on the McDona ld Observatory 2.7 m telescope. K2-29 b (EPIC 211089792 b) transits a K1V star with a period of $3.2589263pm0.0000015$ days; its orbit is slightly eccentric ($e=0.084_{-0.023}^{+0.032}$). It has a radius of $R_P=1.000_{-0.067}^{+0.071}$ $R_J$ and a mass of $M_P=0.613_{-0.026}^{+0.027}$ $M_J$. Its host star exhibits significant rotational variability, and we measure a rotation period of $P_{mathrm{rot}}=10.777 pm 0.031$ days. K2-30 b (EPIC 210957318 b) transits a G6V star with a period of $4.098503pm0.000011$ days. It has a radius of $R_P=1.039_{-0.051}^{+0.050}$ $R_J$ and a mass of $M_P=0.579_{-0.027}^{+0.028}$ $M_J$. The star has a low metallicity for a hot Jupiter host, $[mathrm{Fe}/mathrm{H}]=-0.15 pm 0.05$.
Although the Transiting Exoplanet Survey Satellite (TESS) primary mission observed the northern and southern ecliptic hemispheres, generally avoiding the ecliptic, and the Kepler space telescope during the K2 mission could only observe near the eclip tic, many of the K2 fields extend far enough from the ecliptic plane that sections overlap with TESS fields. Using photometric observations from both K2 and TESS, combined with archival spectroscopic observations, we globally modeled four known planetary systems discovered by K2 that were observed in the first year of the primary TESS mission. Specifically, we provide updated ephemerides and system parameters for K2-114 b, K2-167 b, K2-237 b, and K2-261 b. These were some of the first K2 planets to be observed by TESS in the first year and include three Jovian sized planets and a sub-Neptune with orbital periods less than 12 days. In each case, the updated ephemeris significantly reduces the uncertainty in prediction of future times of transit, which is valuable for planning observations with the James Webb Space Telescope and other future facilities. The TESS extended mission is expected to observe about half of the K2 fields, providing the opportunity to perform this type of analysis on a larger number of systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا