ﻻ يوجد ملخص باللغة العربية
Let $K$ be a reductive subgroup of a reductive group $G$ over an algebraically closed field $k$. The notion of relative complete reducibility, introduced in previous work of Bate-Martin-Roehrle-Tange, gives a purely algebraic description of the closed $K$-orbits in $G^n$, where $K$ acts by simultaneous conjugation on $n$-tuples of elements from $G$. This extends work of Richardson and is also a natural generalization of Serres notion of $G$-complete reducibility. In this paper we revisit this idea, giving a characterization of relative $G$-complete reducibility which directly generalizes equivalent formulations of $G$-complete reducibility. If the ambient group $G$ is a general linear group, this characterization yields representation-theoretic criteria. Along the way, we extend and generalize several results from the aforementioned work of Bate-Martin-Roehrle-Tange.
We study a relative variant of Serres notion of $G$-complete reducibility for a reductive algebraic group $G$. We let $K$ be a reductive subgroup of $G$, and consider subgroups of $G$ which normalise the identity component $K^{circ}$. We show that su
Let H be a reductive subgroup of a reductive group G over an algebraically closed field k. We consider the action of H on G^n, the n-fold Cartesian product of G with itself, by simultaneous conjugation. We give a purely algebraic characterization of
In this note, we unify and extend various concepts in the area of $G$-complete reducibility, where $G$ is a reductive algebraic group. By results of Serre and Bate--Martin--R{o}hrle, the usual notion of $G$-complete reducibility can be re-framed as a
Completely reducible subcomplexes of spherical buildings was defined by J.P. Serre and are used in studying subgroups of reductive algebraic groups. We begin the study of completely reducible subcomplexes of twin buildings and how they may be used to
We initiate an investigation of lattices in a new class of locally compact groups, so called locally pro-$p$-complete Kac-Moody groups. We discover that in rank 2 their cocompact lattices are particularly well-behaved: under mild assumptions, a cocom