ﻻ يوجد ملخص باللغة العربية
We present a complete analytical derivation of the equations used for stationary and nonstationary wave systems regarding resonant sound transmission and reflection described by the phenomenological Coupled-Mode Theory. We calculate the propagating and coupling parameters used in Coupled-Mode Theory directly by utilizing the generalized eigenwave-eigenvalue problem from the Hamiltonian of the sound wave equations. This Hamiltonian formalization can be very useful since it has the ability to describe mathematically a broad range of acoustic wave phenomena. We demonstrate how to use this theory as a basis for perturbative analysis of more complex resonant scattering scenarios. In particular, we also form the effective Hamiltonian and coupled-mode parameters for the study of sound resonators with background moving media. Finally, we provide a comparison between Coupled-Mode theory and full-wave numerical examples, which validate the Hamiltonian approach as a relevant model to compute the scattering characteristics of waves by complex resonant systems.
A mode parabolic equation method for resonantly interacted modes was developed. The flow of acoustic energy is conserved for the derived equations with an accuracy adequate to the used approximation. The testing calculations were done for ASA wedge b
Coupled mode theory (CMT) is a powerful framework for decomposing interactions between electromagnetic waves and scattering bodies into resonances and their couplings with power-carrying channels. It has widespread use in few-resonance, weakly couple
A pure analytic one-way coupled mode propagation model for resonant interacting modes is obtained by the multiscale expansion method. It is proved that the acoustic energy flux is conserved in this model up to the first degree of the corresponding sm
Electromagnetic (EM) scattering systems widely exist in EM engineering domain. For a certain objective scattering system, all of its working modes constitute a linear space, i.e. modal space. Characteristic mode theory (CMT) can effectively construct
Acoustic cloaks that make object undetectable to sound waves have potential applications in a variety of scenarios and have received increasing interests recently. However, the experimental realization of a three-dimensional (3D) acoustic cloak that