ﻻ يوجد ملخص باللغة العربية
We develop a new framework for generalizing approximation algorithms from the structural graph algorithm literature so that they apply to graphs somewhat close to that class (a scenario we expect is common when working with real-world networks) while still guaranteeing approximation ratios. The idea is to $textit{edit}$ a given graph via vertex- or edge-deletions to put the graph into an algorithmically tractable class, apply known approximation algorithms for that class, and then $textit{lift}$ the solution to apply to the original graph. We give a general characterization of when an optimization problem is amenable to this approach, and show that it includes many well-studied graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum Maximal Matching, Chromatic Number, ($ell$-)Dominating Set, Edge ($ell$-)Dominating Set, and Connected Dominating Set. To enable this framework, we develop new editing algorithms that find the approximately-fewest edits required to bring a given graph into one of several important graph classes (in some cases, also approximating the target parameter of the family). For bounded degeneracy, we obtain a bicriteria $(4,4)$-approximation which also extends to a smoother bicriteria trade-off. For bounded treewidth, we obtain a bicriteria $(O(log^{1.5} n), O(sqrt{log w}))$-approximation, and for bounded pathwidth, we obtain a bicriteria $(O(log^{1.5} n), O(sqrt{log w} cdot log n))$-approximation. For treedepth $2$ (also related to bounded expansion), we obtain a $4$-approximation. We also prove complementary hardness-of-approximation results assuming $mathrm{P} eq mathrm{NP}$: in particular, these problems are all log-factor inapproximable, except the last which is not approximable below some constant factor ($2$ assuming UGC).
In $(k,r)$-Center we are given a (possibly edge-weighted) graph and are asked to select at most $k$ vertices (centers), so that all other vertices are at distance at most $r$ from a center. In this paper we provide a number of tight fine-grained boun
These are the lecture notes for the DIMACS Tutorial Limits of Approximation Algorithms: PCPs and Unique Games held at the DIMACS Center, CoRE Building, Rutgers University on 20-21 July, 2009. This tutorial was jointly sponsored by the DIMACS Special
To date, the only way to argue polynomial lower bounds for dynamic algorithms is via fine-grained complexity arguments. These arguments rely on strong assumptions about specific problems such as the Strong Exponential Time Hypothesis (SETH) and the O
We study a combinatorial problem called Minimum Maximal Matching, where we are asked to find in a general graph the smallest that can not be extended. We show that this problem is hard to approximate with a constant smaller than 2, assuming the Uniqu
One of the strongest techniques available for showing lower bounds on quantum communication complexity is the logarithm of the approximation rank of the communication matrix--the minimum rank of a matrix which is entrywise close to the communication