ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasmonics in Argentene

207   0   0.0 ( 0 )
 نشر من قبل Prineha Narang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional materials exhibit a fascinating range of electronic and photonic properties vital for nanophotonics, quantum optics and emerging quantum information technologies. Merging concepts from the fields of ab initio materials science and nanophotonics, there is now an opportunity to engineer new photonic materials whose optical, transport, and scattering properties are tailored to attain thermodynamic and quantum limits. Here, we present first-principles calculations predicting that Argentene, a single-crystalline hexagonal close-packed monolayer of Ag, can dramatically surpass the optical properties and electrical conductivity of conventional plasmonic materials. In the low-frequency limit, we show that the scattering rate and resistivity reduce by a factor of three compared to the bulk three-dimensional metal. Most importantly, the low scattering rate extends to optical frequencies in sharp contrast to e.g. graphene, whose scattering rate increase drastically in the near-infrared range due to optical-phonon scattering. Combined with an intrinsically high carrier density, this facilitates highly-confined surface plasmons extending to visible frequencies. We evaluate Argentene across three distinct figures of merit, spanning the spectrum of typical plasmonic applications; in each, Argentene outperforms the state-of-the-art. This unique combination of properties will make Argentene a valuable addition to the two-dimensional heterostructure toolkit for quantum electronic and photonic technologies.



قيم البحث

اقرأ أيضاً

Ultraviolet (UV) plasmonics aims at combining the strong absorption bands of molecules in the UV range with the intense electromagnetic fields of plasmonic nanostructures to promote surface-enhanced spectroscopy and catalysis. Currently, aluminum is the most widely used metal for UV plasmonics, and is generally assumed to be remarkably stable thanks to its natural alumina layer passivating the metal surface. However, we find here that under 266 nm UV illumination, aluminum can undergo a dramatic photocorrosion in water within a few tens of seconds and even at low average UV powers. This aluminum instability in water environments critically limits the UV plasmonics applications. We show that the aluminum photocorrosion is related to the nonlinear absorption by water in the UV range leading to the production of hydroxyl radicals. Different corrosion protection approaches are tested using scavengers for reactive oxygen species and polymer layers deposited on top of the aluminum structures. Using optimized protection, we achieve a ten-fold increase in the available UV power range leading to no visible photocorrosion effects. This technique is crucial to achieve stable use of aluminum nanostructures for UV plasmonics in aqueous solutions.
Graphene is a unique material to study fundamental limits of plasmonics. Apart from the ultimate single-layer thickness, its carrier concentration can be tuned by chemical doping or applying an electric field. In this manner the electrodynamic proper ties of graphene can be varied from highly conductive to dielectric. Graphene supports strongly confined, propagating surface plasmon-polaritons (SPPs) in a broad spectral range from terahertz to mid-infrared frequencies. It also possesses a strong magneto-optical response and thus provides complimentary architectures to conventional magneto-plasmonics based on magneto-optically active metals or dielectrics. Despite of a large number of review articles devoted to plasmonic properties and applications of graphene, little is known about graphene magneto-plasmonics and topological effects in graphene-based nanostructures, which represent the main subject of this review. We discuss several strategies to enhance plasmonic effects in topologically distinct closed surface landscapes, i.e. graphene nanotubes, cylindric nanocavities and toroidal nanostructures. A novel phenomenon of the strongly asymmetric SPP propagation on chiral meta-structures and fundamental relations between structural and plasmonic topological indices are reviewed.
We report here a general theory describing photoelectron transportation dynamics in GaAs semiconductor photocathodes. Gradient doping is incorporated in the model through the inclusion of directional carrier drift. The time-evolution of electron conc entration in the active layer upon the injection of an excitation pulse is solved both numerically and analytically. The predictions of the model are compared with experiments via carrier-induced transient reflectivity change, which is measured for gradient-doped and uniform-doped photocathodes using femtosecond pump-probe reflectometry. Excellent agreement is found between the experiments and the theory, leading to the characterization of key device parameters such as diffusion constant and electron decay rates. Comparisons are also made between uniform doping and gradient doping for their characteristics in photoelectron transportation. Doping gradient is found to be able to accelerate electron accumulation on the device surface. These results offer new insights into the dynamics of III-V photocathodes and potentially open a new avenue toward experimental characterization of device parameters.
Luminescent defect-centers in hexagonal boron nitride (hBN) have emerged as a promising 2D-source of single photon emitters (SPEs) due to their high brightness and robust operation at room temperature. The ability to create such emitters with well-de fined optical properties is a cornerstone towards their integration into on-chip photonic architectures. Here, we report an effective approach to fabricate hBN single photon emitters (SPEs) with desired emission properties in two isolated spectral regions via the manipulation of boron diffusion through copper during atmospheric pressure chemical vapor deposition (APCVD)--a process we term gettering. Using the gettering technique we deterministically place the resulting zero-phonon line (ZPL) between the regions 550-600 nm or from 600-650 nm, paving the way for hBN SPEs with tailored emission properties across a broad spectral range. Our ability to control defect formation during hBN growth provides a simple and cost-effective means to improve the crystallinity of CVD hBN films, and lower defect density making it applicable to hBN growth for a wide range of applications. Our results are important to understand defect formation of quantum emitters in hBN and deploy them for scalable photonic technologies.
Plasmonic nanopores are extensively investigated as single molecules detectors. The main limitations in plasmonic nanopore technology are the too fast translocation velocity of the molecule through the pore and the consequent very short analysis time s, as well as the possible instabilities due to local heating. The most interesting approach to control the translocation of molecules and enable longer acquisition times is represented by the ability to efficiently trap and tune the motion of nanoparticles that can be used to tag molecules. Here, we theoretically investigate the performance of a magneto-plasmonic nanopore prepared with a thin layer of cobalt sandwiched between two gold layers. A nanopore is then coupled with a translocating magnetic nanoparticle. By setting the magnetic configuration of the cobalt layer around the pore by an external magnetic field, it is possible to generate a nanoscale magnetic tweezer to trap the nanoparticle at a specific point. Considering a 10 nm magnetite nanoparticle we calculate a trapping force up to 28 pN, an order of magnitude above the force that can be obtained with standard optical or plasmonic trapping approaches. Moreover, the magnetic force pulls the nanoparticle in close contact with the plasmonic nanopores wall, thus enabling the formation of a nanocavity enclosing a deeply sub-wavelength confined electromagnetic field with an average field intensity enhancement up to 230 at near-infrared wavelengths. The presented hybrid magneto-plasmonic system points towards a strategy to improve nanopore-based biosensors for single-molecule detection and potentially for analysis of various biomolecules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا