Accelerating Greedy Coordinate Descent Methods


الملخص بالإنكليزية

We study ways to accelerate greedy coordinate descent in theory and in practice, where accelerate refers either to $O(1/k^2)$ convergence in theory, in practice, or both. We introduce and study two algorithms: Accelerated Semi-Greedy Coordinate Descent (ASCD) and Accelerated Greedy Coordinate Descent (AGCD). While ASCD takes greedy steps in the $x$-updates and randomized steps in the $z$-updates, AGCD is a straightforward extension of standard greedy coordinate descent that only takes greedy steps. On the theory side, our main results are for ASCD: we show that ASCD achieves $O(1/k^2)$ convergence, and it also achieves accelerated linear convergence for strongly convex functions. On the empirical side, we observe that both AGCD and ASCD outperform Accelerated Randomized Coordinate Descent on a variety of instances. In particular, we note that AGCD significantly outperforms the other accelerated coordinate descent methods in numerical tests, in spite of a lack of theoretical guarantees for this method. To complement the empirical study of AGCD, we present a Lyapunov energy function argument that points to an explanation for why a direct extension of the acceleration proof for AGCD does not work; and we also introduce a technical condition under which AGCD is guaranteed to have accelerated convergence. Last of all, we confirm that this technical condition holds in our empirical study.

تحميل البحث