ﻻ يوجد ملخص باللغة العربية
Typical experimental measurement is set up as a study of the systems response to a stationary external excitation. This approach considers any random fluctuation of the signal as spurious contribution which is to be eliminated via time-averaging or, equivalently, bandwidth reduction. Beyond that lies a conceptually different paradigm -- the measurement of the systems spontaneous fluctuations. The goal of this overview article is to demonstrate how current noise measurements bring insight into hidden features of electronic transport in various mesoscopic conductors, ranging from 2D topological insulators to individual carbon nanotubes.
Electronegativity is shown to control charge transfer, energy level alignments, and electron currents in single molecule tunnel junctions, all of which are governed by correlations contained within the density matrix. This is demonstrated by the fact
In LaAlO3/SrTiO3 heterostructures, a commonly observed but poorly understood phenomenon is that of electron trapping in back-gating experiments. In this work, by combining magnetotransport measurements and self-consistent Schroedinger-Poisson calcula
The changes of the spin depolarization length in zinc-blende semiconductors when an external component of correlated noise is added to a static driving electric field are analyzed for different values of field strength, noise amplitude and correlatio
Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presen
Consider two Fermi gases with the same {it average} currents: a transport gas, as in solid-state experiments where the chemical potentials of terminal 1 is $mu+eV$ and of terminal 2 and 3 is $mu$, and a beam, i.e., electrons entering only from termin