ﻻ يوجد ملخص باللغة العربية
This paper presents a physics-based analytical model for the MOS transistor operating continuously from room temperature down to liquid-helium temperature (4.2 K) from depletion to strong inversion and in the linear and saturation regimes. The model is developed relying on the 1D Poisson equation and the drift-diffusion transport mechanism. The validity of the Maxwell-Boltzmann approximation is demonstrated in the limit to zero Kelvin as a result of dopant freeze-out in cryogenic equilibrium. Explicit MOS transistor expressions are then derived including incomplete dopant-ionization, bandgap widening, mobility reduction, and interface charge traps. The temperature dependency of the interface-trapping process explains the discrepancy between the measured value of the subthreshold swing and the thermal limit at deep-cryogenic temperatures. The accuracy of the developed model is validated by experimental results on a commercially available 28-nm bulk CMOS process. The proposed model provides the core expressions for the development of physically-accurate compact models dedicated to low-temperature CMOS circuit simulation.
We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid he
We show that a cryogenic amplifier composed of a homemade GaAs high-electron-mobility transistor (HEMT) is suitable for current-noise measurements in a mesoscopic device at dilution-refrigerator temperatures. The lower noise characteristics of our ho
We present a realisation of high bandwidth instrumentation at cryogenic temperatures and for dilution refrigerator operation that possesses advantages over methods using radio-frequency single electron transistor or transimpedance amplifiers. The abi
We present an analytical device model for a graphene bilayer field-effect transistor (GBL-FET) with a graphene bilayer as a channel, and with back and top gates. The model accounts for the dependences of the electron and hole Fermi energies as well a
Spin transistors and spin Hall effects have been two separate leading directions of research in semiconductor spintronics which seeks new paradigms for information processing technologies. We have brought the two directions together to realize an all