ترغب بنشر مسار تعليمي؟ اضغط هنا

A new class of efficient randomized benchmarking protocols

78   0   0.0 ( 0 )
 نشر من قبل Jonas Helsen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Randomized benchmarking is a technique for estimating the average fidelity of a set of quantum gates. For general gatesets, however, it is difficult to draw robust conclusions from the resulting data. Here we propose a new method based on representation theory that has little experimental overhead and applies to a broad class of benchmarking problems. As an example, we apply our method to a gateset that includes the $T$-gate, and analyze a new interleaved benchmarking protocol that extracts the average fidelity of a 2-qubit Clifford gate using only single-qubit Clifford gates as reference.



قيم البحث

اقرأ أيضاً

Randomized benchmarking (RB) protocols are standard tools for characterizing quantum devices. Prior analyses of RB protocols have not provided a complete method for analyzing realistic data, resulting in a variety of ad-hoc methods. The main confound ing factor in rigorously analyzing data from RB protocols is an unknown and noise-dependent distribution of survival probabilities over random sequences. We propose a hierarchical Bayesian method where these survival distributions are modeled as nonparametric Dirichlet process mixtures. Our method infers parameters of interest without additional assumptions about the underlying physical noise process. We show with numerical examples that our method works robustly for both standard and highly pathological error models. Our method also works reliably at low noise levels and with little data because we avoid the asymptotic assumptions of commonly used methods such as least-squares fitting. For example, our method produces a narrow and consistent posterior for the average gate fidelity from ten random sequences per sequence length in the standard RB protocol.
We describe a scalable experimental protocol for obtaining estimates of the error rate of individual quantum computational gates. This protocol, in which random Clifford gates are interleaved between a gate of interest, provides a bounded estimate of the average error of the gate under test so long as the average variation of the noise affecting the full set of Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find gate errors that compare favorably with the gate errors extracted via quantum process tomography.
To improve the performance of multi-qubit algorithms on quantum devices it is critical to have methods for characterizing non-local quantum errors such as crosstalk. To address this issue, we propose and test an extension to the analysis of simultane ous randomized benchmarking data -- correlated randomized benchmarking. We fit the decay of correlated polarizations to a composition of fixed-weight depolarizing maps to characterize the locality and weight of crosstalk errors. From these errors we introduce a crosstalk metric which indicates the distance to the closest map with only local errors. We demonstrate this technique experimentally with a four-qubit superconducting device and utilize correlated RB to validate crosstalk reduction when we implement an echo sequence.
The term randomized benchmarking refers to a collection of protocols that in the past decade have become the gold standard for characterizing quantum gates. These protocols aim at efficiently estimating the quality of a set of quantum gates in a way that is resistant to state preparation and measurement errors, and over the years ma
A key requirement for scalable quantum computing is that elementary quantum gates can be implemented with sufficiently low error. One method for determining the error behavior of a gate implementation is to perform process tomography. However, standa rd process tomography is limited by errors in state preparation, measurement and one-qubit gates. It suffers from inefficient scaling with number of qubits and does not detect adverse error-compounding when gates are composed in long sequences. An additional problem is due to the fact that desirable error probabilities for scalable quantum computing are of the order of 0.0001 or lower. Experimentally proving such low errors is challenging. We describe a randomized benchmarking method that yields estimates of the computationally relevant errors without relying on accurate state preparation and measurement. Since it involves long sequences of randomly chosen gates, it also verifies that error behavior is stable when used in long computations. We implemented randomized benchmarking on trapped atomic ion qubits, establishing a one-qubit error probability per randomized pi/2 pulse of 0.00482(17) in a particular experiment. We expect this error probability to be readily improved with straightforward technical modifications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا