ترغب بنشر مسار تعليمي؟ اضغط هنا

Age-structured social interactions enhance radicalization

56   0   0.0 ( 0 )
 نشر من قبل Yao-Li Chuang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Disaffected youth are among the most susceptible in espousing and acting on extremist ideals, as confirmed by demographic studies. To study age-dependent radicalization we introduce a three-stage model where individuals progress through non-radical, activist, and radical states, while also aging. Transitions between stages are modeled as age-dependent interactions that are maximized for individuals of the same age and that are enhanced at early adulthood. For comparison, we also derive the age-independent formulation corresponding to the full age-dependent model. We find that age-dependence leads to more complex dynamics, enhancing radicalization in certain parameter regimes. We also observe waves of radical behavior ebbing and flowing over generational cycles, realizing well known paradigms in political science. While government intervention is most effective when the appropriate ages are targeted, deciding whether preventive or corrective action is preferable depends on the aggressiveness of the radicalization process.



قيم البحث

اقرأ أيضاً

101 - J.-F. Mercure 2013
At the heart of technology transitions lie complex processes of social and industrial dynamics. The quantitative study of sustainability transitions requires modelling work, which necessitates a theory of technology substitution. Many, if not most, c ontemporary modelling approaches for future technology pathways overlook most aspects of transitions theory, for instance dimensions of heterogenous investor choices, dynamic rates of diffusion and the profile of transitions. A significant body of literature however exists that demonstrates how transitions follow S-shaped diffusion curves or Lotka-Volterra systems of equations. This framework is used ex-post since timescales can only be reliably obtained in cases where the transitions have already occurred, precluding its use for studying cases of interest where nascent innovations in protective niches await favourable conditions for their diffusion. In principle, scaling parameters of transitions can, however, be derived from knowledge of industrial dynamics, technology turnover rates and technology characteristics. In this context, this paper presents a theory framework for evaluating the parameterisation of S-shaped diffusion curves for use in simulation models of technology transitions without the involvement of historical data fitting, making use of standard demography theory applied to technology at the unit level. The classic Lotka-Volterra competition system emerges from first principles from demography theory, its timescales explained in terms of technology lifetimes and industrial dynamics. The theory is placed in the context of the multi-level perspective on technology transitions, where innovation and the diffusion of new socio-technical regimes take a prominent place, as well as discrete choice theory, the primary theoretical framework for introducing agent diversity.
The rapid spread of radical ideologies has led to a world-wide succession of terrorist attacks in recent years. Understanding how extremist tendencies germinate, develop, and drive individuals to action is important from a cultural standpoint, but al so to help formulate response and prevention strategies. Demographic studies, interviews with radicalized subjects, analysis of terrorist databases, reveal that the path to radicalization occurs along progressive steps, where age, social context and peer-to-peer exchanges play major roles. To execute terrorist attacks, radicals must efficiently communicate with one another while maintaining secrecy; they are also subject to pressure from counter-terrorism agencies, public opinion and the need for material resources. Similarly, government entities must gauge which intervention methods are most effective. While a complete understanding of the processes that lead to extremism and violence, and of which deterrents are optimal, is still lacking, mathematical modelers have contributed to the discourse by using tools from statistical mechanics and applied mathematics to describe existing and novel paradigms, and to propose novel counter-terrorism strategies. We review some of their approaches in this work, including compartment models for populations of increasingly extreme views, continuous time models for age-structured radical populations, radicalization as social contagion processes on lattices and social networks, agent based models, game theoretic formulations. We highlight the useful insights offered by analyzing radicalization and terrorism through quantitative frameworks. Finally, we discuss the role of institutional intervention and the stages at which de-radicalization strategies might be most effective.
186 - Martin Burger 2020
The aim of this paper is to study the derivation of appropriate meso- and macroscopic models for interactions as appearing in social processes. There are two main characteristics the models take into account, namely a network structure of interaction s, which we treat by an appropriate mesoscopic description, and a different role of interacting agents. The latter differs from interactions treated in classical statistical mechanics in the sense that the agents do not have symmetric roles, but there is rather an active and a passive agent. We will demonstrate how a certain form of kinetic equations can be obtained to describe such interactions at a mesoscopic level and moreover obtain macroscopic models from monokinetics solutions of those. The derivation naturally leads to systems of nonlocal reaction-diffusion equations (or in a suitable limit loc
A key question concerning collective decisions is whether a social system can settle on the best available option when some members learn from others instead of evaluating the options on their own. This question is challenging to study, and previous research has reached mixed conclusions, because collective decision outcomes depend on the insufficiently understood complex system of cognitive strategies, task properties, and social influence processes. This study integrates these complex interactions together in one general yet partially analytically tractable mathematical framework using a dynamical system model. In particular, it investigates how the interplay of the proportion of social learners, the relative merit of options, and the type of conformity response affect collective decision outcomes in a binary choice. The model predicts that when the proportion of social learners exceeds a critical threshold, a bi-stable state appears in which the majority can end up favoring either the higher- or lower-merit option, depending on fluctuations and initial conditions. Below this threshold, the high-merit option is chosen by the majority. The critical threshold is determined by the conformity response function and the relative merits of the two options. The study helps reconcile disagreements about the effect of social learners on collective performance and proposes a mathematical framework that can be readily adapted to extensions investigating a wider variety of dynamics.
Daily interactions naturally define social circles. Individuals tend to be friends with the people they spend time with and they choose to spend time with their friends, inextricably entangling physical location and social relationships. As a result, it is possible to predict not only someones location from their friends locations but also friendship from spatial and temporal co-occurrence. While several models have been developed to separately describe mobility and the evolution of social networks, there is a lack of studies coupling social interactions and mobility. In this work, we introduce a new model that bridges this gap by explicitly considering the feedback of mobility on the formation of social ties. Data coming from three online social networks (Twitter, Gowalla and Brightkite) is used for validation. Our model reproduces various topological and physical properties of these networks such as: i) the size of the connected components, ii) the distance distribution between connected users, iii) the dependence of the reciprocity on the distance, iv) the variation of the social overlap and the clustering with the distance. Besides numerical simulations, a mean-field approach is also used to study analytically the main statistical features of the networks generated by the model. The robustness of the results to changes in the model parameters is explored, finding that a balance between friend visits and long-range random connections is essential to reproduce the geographical features of the empirical networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا