ﻻ يوجد ملخص باللغة العربية
Flory-Huggins theory is a mean field theory for modelling the free energy of dense polymer solutions and polymer melts. In this paper we use Flory-Huggins theory as a model of a dense two dimensional self-avoiding walk confined to a square in the square lattice. The theory describes the free energy of the walk well, and we estimate the Flory interaction parameter of the walk to be $chi_{saw} = 0.32(1)$.
We study a restricted class of self-avoiding walks (SAW) which start at the origin (0, 0), end at $(L, L)$, and are entirely contained in the square $[0, L] times [0, L]$ on the square lattice ${mathbb Z}^2$. The number of distinct walks is known to
The growth constant for two-dimensional self-avoiding walks on the honeycomb lattice was conjectured by Nienhuis in 1982, and since that time the corresponding results for the square and triangular lattices have been sought. For the square lattice, a
We consider self-avoiding walks terminally attached to a surface at which they can adsorb. A force is applied, normal to the surface, to desorb the walk and we investigate how the behaviour depends on the vertex of the walk at which the force is appl
Self-avoidance is a common mechanism to improve the efficiency of a random walker for covering a spatial domain. However, how this efficiency decreases when self-avoidance is impaired or limited by other processes has remained largely unexplored. Her
A numerical simulation shows that the osmotic pressure of compressed lattice knots is a function of knot type, and so of entanglements. The osmotic pressure for the unknot goes through a negative minimum at low concentrations, but in the case of non-