ﻻ يوجد ملخص باللغة العربية
The quantum Langevin formalism is used to study the charge carrier transport in a twodimensional sample. The center of mass of charge carriers is visualized as a quantum particle, while an environment acts as a heat bath coupled to it through the particle-phonon interaction. The dynamics of the charge carriers is limited by the average collision time which takes effectively into account the two-body effects. The functional dependencies of particle-phonon interaction and average collision time on the temperature and magnetic field are phenomenologically treated. The galvano-magnetic and thermo-magnetic effects in the quantum system appear as the result of the transitional processes at low temperatures.
The non-Markovian dynamics of a charged particle linearly coupled to a neutral bosonic heat bath is investigated in an external uniform magnetic field. The analytical expressions for the time-dependent and asymptotic friction and diffusion coefficien
We report the design and development of a piezoelectric sample rotation system, and its integration into an Oxford Instruments Kelvinox 100 dilution refrigerator, for orientation-dependent studies of quantum transport in semiconductor nanodevices at
One long-standing difficult problem in quantum dissipative dynamics is to solve the spin-boson model in a non-Markovian regime where a tractable systematic master equation does not exist. The spin-boson model is particularly important due to its cruc
We study measures of decoherence and thermalization of a quantum system $S$ in the presence of a quantum environment (bath) $E$. The whole system is prepared in a canonical thermal state at a finite temperature. Applying perturbation theory with resp
We discuss how to derive a Langevin equation (LE) in non standard systems, i.e. when the kinetic part of the Hamiltonian is not the usual quadratic function. This generalization allows to consider also cases with negative absolute temperature. We fir