ﻻ يوجد ملخص باللغة العربية
There is a consensus in the literature that starburst galaxies are triggered by inter- action events. However, it remains an open question as to what extent both merging and non-merging interactions have in triggering starbursts? In this study, we make use of the Illustris simulation to test how different triggering mechanisms can effect starburst events. We examine star formation rate, colour and environment of starburst galaxies to determine if this could be why we witness a bimodality in post-starburst populations within observational studies. Further, we briefly test the extent of quenching due to AGN feedback. From Illustris, we select 196 starburst galaxies at z = 0.15 and split them into post-merger and pre-merger/harassment driven starburst samples. We find that 55% of this sample not undergone a merger in the past 2 Gyr. Both of our samples are located in low-density environments within the filament regions of the cosmic web, however we find that pre-merger/harassment driven starburst are in higher density environments than post-merger driven starbursts. We also find that pre-merger/harassment starbursts are redder than post-merger starbursts, this could be driven by environmental effects. Both however, produce nuclear starbursts of comparable strengths.
We present the first study of evolution of galaxy groups in the Illustris simulation. We focus on dynamically relaxed and unrelaxed galaxy groups representing dynamically evolved and evolving galaxy systems, respectively. The evolutionary state of a
(Abridged) Any viable cosmological model in which galaxies interact predicts the existence of primordial and tidal dwarf galaxies (TDGs). In particular, in the standard model of cosmology ($Lambda$CDM), according to the dual dwarf galaxy theorem, the
The presence of hot gaseous coronae around present-day massive spiral galaxies is a fundamental prediction of galaxy formation models. However, our observational knowledge remains scarce, since to date only four gaseous coronae were detected around s
Quenching is a key topic in exploring the formation and evolution of galaxies. In this work, we study the quenching rate, i.e., the variation in the fraction of quenched galaxies per unit time, of the Illustris-1 simulation. By building the quenched
Surveying dark matter deficient galaxies (those with dark matter mass to stellar mass ratio $M_{rm dm}/M_{rm star}<1$) in the Illustris simulation of structure formation in the flat-$Lambda$CDM cosmogony, we find $M_{rm star} approx 2 times 10^8, M_s