ﻻ يوجد ملخص باللغة العربية
This paper takes a comprehensive view on the protocol stacks that are under debate for a future Internet of Things (IoT). It addresses the holistic question of which solution is beneficial for common IoT use cases. We deploy NDN and the two popular IP-based application protocols, CoAP and MQTT, in its different variants on a large-scale IoT testbed in single- and multi-hop scenarios. We analyze the use cases of scheduled periodic and unscheduled traffic under varying loads. Our findings indicate that (a) NDN admits the most resource-friendly deployment on nodes, and (b) shows superior robustness and resilience in multi-hop scenarios, while (c) the IP protocols operate at less overhead and higher speed in single-hop deployments. Most strikingly we find that NDN-based protocols are in significantly better flow balance than the UDP-based IP protocols and require less corrective actions.
The emerging Internet of Things (IoT) challenges the end-to-end transport of the Internet by low power lossy links and gateways that perform protocol translations. Protocols such as CoAP or MQTT-SN are degraded by the overhead of DTLS sessions, which
Under the advocacy of the international community, more and more research topics have been built around the ocean. This paper proposed an implementation scheme of marine wireless sensor network monitoring system based on LoRa and MQTT. Different from
Volunteer computing uses Internet-connected devices (laptops, PCs, smart devices, etc.), in which their owners volunteer them as storage and computing power resources, has become an essential mechanism for resource management in numerous applications
Routing in NDN networks must scale in terms of forwarding table size and routing protocol overhead. Hyperbolic routing (HR) presents a potential solution to address the routing scalability problem, because it does not use traditional forwarding table
Quality of Service (QoS) in the IP world mainly manages forwarding resources, i.e., link capacities and buffer spaces. In addition, Information Centric Networking (ICN) offers resource dimensions such as in-network caches and forwarding state. In con