ﻻ يوجد ملخص باللغة العربية
Efficient large-scale annotation of genomic intervals is essential for personal genome interpretation in the realm of precision medicine. There are 13 possible relations between two intervals according to Allens interval algebra. Conventional interval trees are routinely used to identify the genomic intervals satisfying a coarse relation with a query interval, but cannot support efficient query for more refined relations such as all Allens relations. We design and implement a novel approach to address this unmet need. Through rewriting Allens interval relations, we transform an interval query to a range query, then adapt and utilize the range trees for querying. We implement two types of range trees: a basic 2-dimensional range tree (2D-RT) and an augmented range tree with fractional cascading (RTFC) and compare them with the conventional interval tree (IT). Theoretical analysis shows that RTFC can achieve the best time complexity for interval queries regarding all Allens relations among the three trees. We also perform comparative experiments on the efficiency of RTFC, 2D-RT and IT in querying noncoding element annotations in a large collection of personal genomes. Our experimental results show that 2D-RT is more efficient than IT for interval queries regarding most of Allens relations, RTFC is even more efficient than 2D-RT. The results demonstrate that RTFC is an efficient data structure for querying large-scale datasets regarding Allens relations between genomic intervals, such as those required by interpreting genome-wide variation in large populations.
The range, segment and rectangle query problems are fundamental problems in computational geometry, and have extensive applications in many domains. Despite the significant theoretical work on these problems, efficient implementations can be complica
Traditional indexing techniques commonly employed in da-ta-ba-se systems perform poorly on multidimensional array scientific data. Bitmap indices are widely used in commercial databases for processing complex queries, due to their effective use of bi
Learning a regression function using censored or interval-valued output data is an important problem in fields such as genomics and medicine. The goal is to learn a real-valued prediction function, and the training output labels indicate an interval
Graphs are widely used to model data in many application domains. Thanks to the wide spread use of GPS-enabled devices, many applications assign a spatial attribute to graph vertices (e.g., geo-tagged social media). Users may issue a Reachability Que
We consider the task of enumerating and counting answers to $k$-ary conjunctive queries against relational databases that may be updated by inserting or deleting tuples. We exhibit a new notion of q-hierarchical conjunctive queries and show that thes