We study the R-torsionfree part of the Ziegler spectrum of an order Lambda over a Dedekind domain R. We underline and comment on the role of lattices over Lambda. We describe the torsionfree part of the spectrum when Lambda is of finite lattice representation type.
Let $R$ be an infinite Dedekind domain with at most finitely many units, and let $K$ denote its field of fractions. We prove the following statement. If $L/K$ is a finite Galois extension of fields and $mathcal{O}$ is the integral closure of $R$ in $
L$, then $mathcal{O}$ contains infinitely many prime ideals. In particular, if $mathcal{O}$ is further a unique factorization domain, then $mathcal{O}$ contains infinitely many non-associate prime elements.
We construct well-behaved extensions of the motivic spectra representing generalized motivic cohomology and connective Balmer--Witt K-theory (among others) to mixed characteristic Dedekind schemes on which 2 is invertible. As a consequence we lift th
e fundamental fiber sequence of $eta$-periodic motivic stable homotopy theory established in [arxiv:2005.06778] from fields to arbitrary base schemes, and use this to determine (among other things) the $eta$-periodized algebraic symplectic and SL-cobordism groups of mixed characteristic Dedekind schemes containing 1/2.
We provide algebraic conditions ensuring the decidability of the theory of modules over effectively given Prufer (in particular Bezout) domains with infinite residue fields in terms of a suitable generalization of the prime radical relation. For B{e}zout domains these conditions are also necessary.
Lorna Gregory
,Sonia LInnocente
,Carlo Toffalori
.
(2018)
.
"The torsionfree part of the Ziegler spectrum of orders over Dedekind domains"
.
Carlo Toffalori
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا