ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying the sparseness of simple geodesics on hyperbolic surfaces

205   0   0.0 ( 0 )
 نشر من قبل Hugo Parlier
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of the article is to provide different explicit quantifications of the non density of simple closed geodesics on hyperbolic surfaces. In particular, we show that within any embedded metric disk on a surface, lies a disk of radius only depending on the topology of the surface (and the size of the first embedded disk), which is disjoint from any simple closed geodesic.



قيم البحث

اقرأ أيضاً

We prove a quantitative estimate, with a power saving error term, for the number of simple closed geodesics of length at most $L$ on a compact surface equipped with a Riemannian metric of negative curvature. The proof relies on the exponential mixing rate for the Teichm{u}ller geodesic flow.
117 - Hugo Parlier 2020
The lengths of geodesics on hyperbolic surfaces satisfy intriguing equations, known as identities, relating these lengths to geometric quantities of the surface. This paper is about a large family of identities that relate lengths of closed geodesics and orthogeodesics to boundary lengths or number of cusps. These include, as particular cases, identities due to Basmajian, to McShane and to Mirzakhani and Tan-Wong-Zhang. In stark contrast to previous identities, the identities presented here include the lengths taken among all closed geodesics.
142 - Ren Guo 2010
This paper studies the combinatorial Yamabe flow on hyperbolic surfaces with boundary. It is proved by applying a variational principle that the length of boundary components is uniquely determined by the combinatorial conformal factor. The combinato rial Yamabe flow is a gradient flow of a concave function. The long time behavior of the flow and the geometric meaning is investigated.
In this article we explore the relationship between the systole and the diameter of closed hyperbolic orientable surfaces. We show that they satisfy a certain inequality, which can be used to deduce that their ratio has a (genus dependent) upper bound.
Froyshov invariants are numerical invariants of rational homology three-spheres derived from gradings in monopole Floer homology. In the past few years, they have been employed to solve a wide range of problems in three and four-dimensional topology. In this paper, we look at connections with hyperbolic geometry for the class of minimal $L$-spaces. In particular, we study relations between Froyshov invariants and closed geodesics using ideas from analytic number theory. We discuss two main applications of our approach. First, we derive effective upper bounds for the Froyshov invariants of minimal hyperbolic $L$-spaces purely in terms of volume and injectivity radius. Second, we describe an algorithm to compute Froyshov invariants of minimal $L$-spaces in terms of data arising from hyperbolic geometry. As a concrete example of our method, we compute the Froyshov invariants for all spin$^c$ structures on the Seifert-Weber dodecahedral space. Along the way, we also prove several results about the eta invariants of the odd signature and Dirac operators on hyperbolic three-manifolds which might be of independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا